# Bounded hypergeometric functions and 2-parameter deformations of multiplicities 

Angela Pasquale<br>Institut Élie Cartan de Lorraine Université de Lorraine - Metz<br>Joint work with<br>E. K. Narayanan (Indian Institute of Sciences, Bangalore)<br>Journées SL2R<br>Théorie des Représentations et Analyse Harmonique<br>\section*{En I'honneur du Professeur Jacques Faraut}

IECL-Nancy, May 12-13, 2022

Helgason-Johnson's theorem: the bounded spherical functions
$G / K=$ Riemannian symmetric space of the noncompact type
$G=$ connected noncompact semisimple Lie group with finite center, e.g. $\mathrm{SL}_{2}(\mathbb{R})$
$K=$ maximal compact subgroup of $G, \quad$ e.g. $\mathrm{SO}_{2}(\mathbb{R})$
$\begin{aligned} \text { Spherical functions }= & (\text { normalized }) K \text {-invariant joint eigenfunctions of the commutative } \\ & \text { algebra } \mathbb{D}(G / K) \text { of } G \text {-invariant differential operators on } G / K\end{aligned}$ matrix coefficients (for the K-fixed vector) of spherical principal series reprs building blocks of the $K$-invariant harmonic analysis on $G / K$
$\mathfrak{g}=\mathfrak{t} \oplus p \quad$ Cartan decomposition of the Lia algebra of $G$
$a \subset p \quad$ maximal abelian subspace (Cartan subspace)
$\Sigma=($ restricted $)$ roots of $(\mathfrak{g}, \mathfrak{a})$
$W=$ Weyl group of $\Sigma$
$\rightsquigarrow$ spherical functions are parametrized by $\mathfrak{a}_{\mathbb{C}}^{*}($ modulo $W$ )
$\Sigma{ }^{+}=$choice of nositive roots in $\Sigma$
$m_{\alpha}=$ multiplicity of the root $\alpha \in \Sigma$
$\rho=1 / 2 \sum_{\alpha \in \Sigma+} m_{\alpha} \alpha$
Harish Chandra's integral formula: $\quad \varphi_{\lambda}(g)=\int_{k} e^{(\lambda-p)(H(g k))} d k, \quad g \in G$
where $H(x) \in \mathfrak{a}$ is the Iwasawa component of $x \in G=K A N$
Then: $\varphi_{w \lambda}=\varphi_{\lambda}$ for all $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ and $w \in W$.

Helgason-Johnson's theorem: the bounded spherical functions
$G / K=$ Riemannian symmetric space of the noncompact type
$G=$ connected noncompact semisimple Lie group with finite center, e.g. SL $L_{2}(\mathbb{R})$
$K=$ maximal compact subgroup of $G$, e.g. $\mathrm{SO}_{2}(\mathbb{R})$
Spherical functions $=($ normalized $) K$-invariant joint eigenfunctions of the commutative algebra $\mathbb{D}(G / K)$ of $G$-invariant differential operators on $G / K$
$\rightsquigarrow$ matrix coefficients (for the $K$-fixed vector) of spherical principal series reprs
$\rightsquigarrow$ building blocks of the $K$-invariant harmonic analysis on $G / K$


## Helgason-Johnson's theorem: the bounded spherical functions

$G / K=$ Riemannian symmetric space of the noncompact type
$G=$ connected noncompact semisimple Lie group with finite center, e.g. SL $L_{2}(\mathbb{R})$
$K=$ maximal compact subgroup of $G$, e.g. $\mathrm{SO}_{2}(\mathbb{R})$
Spherical functions $=($ normalized $) K$-invariant joint eigenfunctions of the commutative algebra $\mathbb{D}(G / K)$ of $G$-invariant differential operators on $G / K$
$\leadsto$ matrix coefficients (for the $K$-fixed vector) of spherical principal series reprs
$\rightsquigarrow$ building blocks of the $K$-invariant harmonic analysis on $G / K$
$\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p} \quad$ Cartan decomposition of the Lia algebra of $G$
$\mathfrak{a} \subset \mathfrak{p}$ maximal abelian subspace (Cartan subspace)
$\Sigma=($ restricted) roots of ( $\mathfrak{g}, \mathfrak{a}$ )
$W=$ Weyl group of $\Sigma$
$\rightsquigarrow$ spherical functions are parametrized by $\mathfrak{a}_{\mathbb{C}}^{*}$ (modulo $W$ )


Helgason-Johnson's theorem: the bounded spherical functions
$G / K=$ Riemannian symmetric space of the noncompact type
$G=$ connected noncompact semisimple Lie group with finite center,
e.g. $\mathrm{SL}_{2}(\mathbb{R})$
$K=$ maximal compact subgroup of $G$,
e.g. $\mathrm{SO}_{2}(\mathbb{R})$

Spherical functions $=($ normalized $) K$-invariant joint eigenfunctions of the commutative algebra $\mathbb{D}(G / K)$ of $G$-invariant differential operators on $G / K$
$\rightsquigarrow$ matrix coefficients (for the $K$-fixed vector) of spherical principal series reprs
$\leadsto$ building blocks of the $K$-invariant harmonic analysis on $G / K$
$\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p} \quad$ Cartan decomposition of the Lia algebra of $G$
$\mathfrak{a} \subset \mathfrak{p}$ maximal abelian subspace (Cartan subspace)
$\Sigma=$ (restricted) roots of ( $\mathfrak{g}, \mathfrak{a}$ )
$W=$ Weyl group of $\Sigma$
$\rightsquigarrow$ spherical functions are parametrized by $\mathfrak{a}_{\mathbb{C}}^{*}$ (modulo $W$ )
$\Sigma^{+}=$choice of positive roots in $\Sigma$
$m_{\alpha}=$ multiplicity of the root $\alpha \in \Sigma$
$\rho=1 / 2 \sum_{\alpha \in \Sigma^{+}} m_{\alpha} \alpha$
Harish-Chandra's integral formula: $\quad \varphi_{\lambda}(g)=\int_{K} e^{(\lambda-\rho)(H(g k))} d k, \quad g \in G$,
where $H(x) \in \mathfrak{a}$ is the Iwasawa component of $x \in G=K A N$
Then: $\varphi_{w \lambda}=\varphi_{\lambda}$ for all $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ and $w \in W$.

## Question:

For which parameters $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ the spherical function
is bounded?

$$
\varphi_{\lambda}(g)=\int_{K} e^{(\lambda-\rho)(H(g k))} d k
$$

$C(\rho)=$ convex hull in $a^{*}$ of $\{w \rho: w \in W\}$

Theorem (Helgason \& Johnson, 1969)
The spherical function $\rho_{\lambda}$ ( mith $\lambda \in n^{*}$ ) is bounded if and only if $\lambda \in C(p)+i a^{*}$. In this case, $\left|\varphi_{\lambda}(g)\right| \leq 1$ for all $g \in G$.

## Applications:

$L^{1}(G / / K)=\left\{f: G \rightarrow \mathbb{C}: L^{1}\right.$ and K-biinvariant: $\left.f\left(k_{1} g k_{2}\right)=f(g),{ }^{\forall} g \in G,{ }^{\nabla} K_{1}, K_{2} \in K\right\}$

- $L^{1}(G / / K)$ is a commutative Banach algebra with respect to convolution. The continuous characters of $L^{1}(G / / K)$ are the maps

$$
f \in I^{1}(G / / K) \longmapsto \int_{G} f(g) \varphi_{i}(g) d g
$$

where $\varphi_{\lambda}$ is a bounded spherical function, i.e. the bdd spherical functions parametrize the maximal ideal space of $L^{1}(G / / K)$

- Spherical Fourier transform of $f \in L^{1}(G / / K)$ :

$$
(F f)(\lambda)=\int_{G} f(g) \varphi_{\lambda}(g) d g
$$

$\varphi_{\lambda}$ is an entire function of $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$. If $\exists U$ open in $\mathfrak{a}_{\mathbb{C}}^{*}$ such that $\varphi_{\lambda}$ is bounded for $\lambda \in U$, then $\mathcal{F} f(\lambda)$ is holomorphic in $U$.

## Question:

For which parameters $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ the spherical function
is bounded?

$$
\varphi_{\lambda}(g)=\int_{K} e^{(\lambda-\rho)(H(g k))} d k
$$

$C(\rho)=$ convex hull in $\mathfrak{a}^{*}$ of $\{w \rho: w \in W\}$
Theorem (Helgason \& Johnson, 1969)
The spherical function $\varphi_{\lambda}$ (with $\lambda \in \mathfrak{a}_{\mathrm{C}}^{*}$ ) is bounded if and only if $\lambda \in C(\rho)+i \mathfrak{a}^{*}$. In this case, $\left|\varphi_{\lambda}(g)\right| \leq 1$ for all $g \in G$.

## Applications

- $L^{1}(G / / K)$ is a commutative Banach algebra with respect to convolution. The continuous characters of $L^{1}(G / / K)$ are the maps
where $\varphi_{\lambda}$ is a bounded spherical function, i.e. the bdd spherical functions
parametrize the maximal ideal space of $L^{1}(G / / K)$
- Spherical Fourier transform of $f \in L^{1}(G / / K)$ :



## Question:

For which parameters $\lambda \in \mathfrak{a}_{\mathrm{C}}^{*}$ the spherical function
is bounded?

$$
\varphi_{\lambda}(g)=\int_{K} e^{(\lambda-\rho)(H(g k))} d k
$$

$C(\rho)=$ convex hull in $\mathfrak{a}^{*}$ of $\{w \rho: w \in W\}$
Theorem (Helgason \& Johnson, 1969)
The spherical function $\varphi_{\lambda}$ (with $\lambda \in \mathfrak{a}_{\mathrm{C}}^{*}$ ) is bounded if and only if $\lambda \in C(\rho)+i \mathfrak{a}^{*}$. In this case, $\left|\varphi_{\lambda}(g)\right| \leq 1$ for all $g \in G$.

Applications:
$L^{1}(G / / K)=\left\{f: G \rightarrow \mathbb{C}: L^{1}\right.$ and $K$-biinvariant: $\left.f\left(k_{1} g k_{2}\right)=f(g),{ }^{\forall} g \in G,{ }^{\forall} k_{1}, k_{2} \in K\right\}$


## Question:

For which parameters $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ the spherical function
is bounded?

$$
\varphi_{\lambda}(g)=\int_{K} e^{(\lambda-\rho)(H(g k))} d k
$$

$C(\rho)=$ convex hull in $\mathfrak{a}^{*}$ of $\{w \rho: w \in W\}$

## Theorem (Helgason \& Johnson, 1969)

The spherical function $\varphi_{\lambda}$ (with $\lambda \in \mathfrak{a}_{\mathrm{C}}^{*}$ ) is bounded if and only if $\lambda \in C(\rho)+i \mathfrak{a}^{*}$. In this case, $\left|\varphi_{\lambda}(g)\right| \leq 1$ for all $g \in G$.

Applications:
$L^{1}(G / / K)=\left\{f: G \rightarrow \mathbb{C}: L^{1}\right.$ and $K$-biinvariant: $\left.f\left(k_{1} g k_{2}\right)=f(g),{ }^{\forall} g \in G,{ }^{\forall} k_{1}, k_{2} \in K\right\}$

- $L^{1}(G / / K)$ is a commutative Banach algebra with respect to convolution. The continuous characters of $L^{1}(G / / K)$ are the maps

$$
f \in L^{1}(G / / K) \longmapsto \int_{G} f(g) \varphi_{\lambda}(g) d g
$$

where $\varphi_{\lambda}$ is a bounded spherical function, i.e. the bdd spherical functions parametrize the maximal ideal space of $L^{1}(G / / K)$

## Question:

For which parameters $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ the spherical function
is bounded?

$$
\varphi_{\lambda}(g)=\int_{K} e^{(\lambda-\rho)(H(g k))} d k
$$

$C(\rho)=$ convex hull in $\mathfrak{a}^{*}$ of $\{w \rho: w \in W\}$

## Theorem (Helgason \& Johnson, 1969)

The spherical function $\varphi_{\lambda}$ (with $\lambda \in \mathfrak{a}_{\mathrm{C}}^{*}$ ) is bounded if and only if $\lambda \in C(\rho)+i \mathfrak{a}^{*}$. In this case, $\left|\varphi_{\lambda}(g)\right| \leq 1$ for all $g \in G$.

Applications:
$L^{1}(G / / K)=\left\{f: G \rightarrow \mathbb{C}: L^{1}\right.$ and $K$-biinvariant: $\left.f\left(k_{1} g k_{2}\right)=f(g),{ }^{\forall} g \in G,{ }^{\forall} k_{1}, k_{2} \in K\right\}$

- $L^{1}(G / / K)$ is a commutative Banach algebra with respect to convolution. The continuous characters of $L^{1}(G / / K)$ are the maps

$$
f \in L^{1}(G / / K) \longmapsto \int_{G} f(g) \varphi_{\lambda}(g) d g
$$

where $\varphi_{\lambda}$ is a bounded spherical function, i.e. the bdd spherical functions parametrize the maximal ideal space of $L^{1}(G / / K)$

- Spherical Fourier transform of $f \in L^{1}(G / / K)$ :

$$
(\mathcal{F} f)(\lambda)=\int_{G} f(g) \varphi_{\lambda}(g) d g, \quad \lambda \in \mathfrak{a}_{\mathbb{C}}^{*} .
$$

$\varphi_{\lambda}$ is an entire function of $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$.

## Question:

For which parameters $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ the spherical function
is bounded?

$$
\varphi_{\lambda}(g)=\int_{K} e^{(\lambda-\rho)(H(g k))} d k
$$

$C(\rho)=$ convex hull in $\mathfrak{a}^{*}$ of $\{w \rho: w \in W\}$

## Theorem (Helgason \& Johnson, 1969)

The spherical function $\varphi_{\lambda}$ (with $\lambda \in \mathfrak{a}_{\mathrm{C}}^{*}$ ) is bounded if and only if $\lambda \in C(\rho)+i \mathfrak{a}^{*}$. In this case, $\left|\varphi_{\lambda}(g)\right| \leq 1$ for all $g \in G$.

Applications:
$L^{1}(G / / K)=\left\{f: G \rightarrow \mathbb{C}: L^{1}\right.$ and $K$-biinvariant: $\left.f\left(k_{1} g k_{2}\right)=f(g),{ }^{\forall} g \in G,{ }^{\forall} k_{1}, k_{2} \in K\right\}$

- $L^{1}(G / / K)$ is a commutative Banach algebra with respect to convolution. The continuous characters of $L^{1}(G / / K)$ are the maps

$$
f \in L^{1}(G / / K) \longmapsto \int_{G} f(g) \varphi_{\lambda}(g) d g
$$

where $\varphi_{\lambda}$ is a bounded spherical function, i.e. the bdd spherical functions parametrize the maximal ideal space of $L^{1}(G / / K)$

- Spherical Fourier transform of $f \in L^{1}(G / / K)$ :

$$
(\mathcal{F} f)(\lambda)=\int_{G} f(g) \varphi_{\lambda}(g) d g, \quad \lambda \in \mathfrak{a}_{\mathbb{C}}^{*} .
$$

$\varphi_{\lambda}$ is an entire function of $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$. If $\exists U$ open in $\mathfrak{a}_{\mathbb{C}}^{*}$ such that $\varphi_{\lambda}$ is bounded for $\lambda \in U$, then $\mathcal{F} f(\lambda)$ is holomorphic in $U$.

## Heckman-Opdam's hypergeometric functions

- The symmetric space $\mathrm{G} / \mathrm{K}$ is replaced by a triple ( $\mathfrak{a}, \Sigma, m$ ) where: $\mathfrak{a}=$ finite dim. Euclidean $\mathbb{R}$-vector space, inner product $\langle\cdot, \cdot\rangle$
$\Sigma=$ root system in $\mathfrak{a}^{*}$, with Weyl group $W$
$m=$ real multiplicity function on $\Sigma$
i.e. $m: \Sigma \rightarrow \mathbb{R}, W$-invariant: $m_{w \alpha}=m_{\alpha}$ for all $\alpha \in \Sigma, w \in W$

where: $\quad r_{\alpha}=$ reflection across $\operatorname{ker} \alpha$,
$\square$
$\left\{x \in \mathfrak{a} \mapsto T_{x}\right\}$ commutative $\Rightarrow$ extends as algebra homom $\left\{p \in S\left(a_{\mathbb{C}}\right) \mapsto T_{p}\right\}$ - If $p \in S\left(\mathfrak{a}_{\mathbb{C}}\right)^{W}$, then $D_{p}:=\left.T_{p}\right|_{C^{\infty}(\mathfrak{a})^{w}}$ is a diff operator on $\mathfrak{a}$ (or $\mathfrak{a}_{\mathbb{C}}$ ).

Example: $\mathbb{D}(a, \Sigma, m)=\left.\mathbb{D}(G / K)\right|_{a}$ if $(a, \Sigma, m)$ is geometric.

## Heckman-Opdam's hypergeometric functions

- The symmetric space $\mathrm{G} / \mathrm{K}$ is replaced by a triple ( $\mathfrak{a}, \Sigma, m$ ) where: $\mathfrak{a}=$ finite dim. Euclidean $\mathbb{R}$-vector space, inner product $\langle\cdot, \cdot\rangle$
$\Sigma=$ root system in $\mathfrak{a}^{*}$, with Weyl group $W$
$m=$ real multiplicity function on $\Sigma$
i.e. $m: \Sigma \rightarrow \mathbb{R}, W$-invariant: $m_{w \alpha}=m_{\alpha}$ for all $\alpha \in \Sigma, w \in W$
$(\mathfrak{a}, \Sigma, m)$ is geometric if from a Riemannian symm space of the noncompact type



## Heckman-Opdam's hypergeometric functions

- The symmetric space $\mathrm{G} / \mathrm{K}$ is replaced by a triple $(\mathfrak{a}, \Sigma, m$ ) where:
$\mathfrak{a}=$ finite dim. Euclidean $\mathbb{R}$-vector space, inner product $\langle\cdot, \cdot\rangle$
$\Sigma=$ root system in $\mathfrak{a}^{*}$, with Weyl group $W$
$m=$ real multiplicity function on $\Sigma$
i.e. $m: \Sigma \rightarrow \mathbb{R}, W$-invariant: $m_{w \alpha}=m_{\alpha}$ for all $\alpha \in \Sigma, w \in W$
$(\mathfrak{a}, \Sigma, m)$ is geometric if from a Riemannian symm space of the noncompact type
- Commutative family $\mathbb{D}$ of differential operators associated with $(\mathfrak{a}, \Sigma, m)$ :

For $x \in \mathfrak{a}$ the Cherednik operator $T_{x}$ is the difference-reflection operator on $\mathfrak{a}$ (or $\mathfrak{a}_{\mathbb{C}}$ ) defined for $f \in C^{\infty}(\mathfrak{a})$ and $H \in \mathfrak{a}$ by

$$
T_{x} f(H)=\partial_{x} f(H)+\sum_{\alpha \in \Sigma^{+}} m_{\alpha} \alpha(x) \frac{f(H)-f\left(r_{\alpha} H\right)}{1-e^{-2 \alpha(H)}}-\rho(m)(x) f(H)
$$

where: $r_{\alpha}=$ reflection across ker $\alpha$,
$\rho(m)=\frac{1}{2} \sum_{\alpha \in \Sigma^{+}} m_{\alpha} \alpha$.

Example: $\mathbb{D}(a, \Sigma, m)=\left.\mathbb{D}(G / K)\right|_{\mathrm{a}}$ if $(\mathfrak{a}, \Sigma, m)$ is geometric.

## Heckman-Opdam's hypergeometric functions

- The symmetric space $\mathrm{G} / \mathrm{K}$ is replaced by a triple $(\mathfrak{a}, \Sigma, m$ ) where:
$\mathfrak{a}=$ finite dim. Euclidean $\mathbb{R}$-vector space, inner product $\langle\cdot, \cdot\rangle$
$\Sigma=$ root system in $\mathfrak{a}^{*}$, with Weyl group $W$
$m=$ real multiplicity function on $\Sigma$
i.e. $m: \Sigma \rightarrow \mathbb{R}, W$-invariant: $m_{w \alpha}=m_{\alpha}$ for all $\alpha \in \Sigma, w \in W$
$(\mathfrak{a}, \Sigma, m)$ is geometric if from a Riemannian symm space of the noncompact type
- Commutative family $\mathbb{D}$ of differential operators associated with $(\mathfrak{a}, \Sigma, m)$ :

For $x \in \mathfrak{a}$ the Cherednik operator $T_{x}$ is the difference-reflection operator on $\mathfrak{a}$ (or $\mathfrak{a}_{\mathbb{C}}$ ) defined for $f \in C^{\infty}(\mathfrak{a})$ and $H \in \mathfrak{a}$ by

$$
T_{x} f(H)=\partial_{x} f(H)+\sum_{\alpha \in \Sigma^{+}} m_{\alpha} \alpha(x) \frac{f(H)-f\left(r_{\alpha} H\right)}{1-e^{-2 \alpha(H)}}-\rho(m)(x) f(H)
$$

where: $r_{\alpha}=$ reflection across $\operatorname{ker} \alpha$,
$\rho(m)=\frac{1}{2} \sum_{\alpha \in \Sigma^{+}} m_{\alpha} \alpha$.
$\left\{x \in \mathfrak{a} \mapsto T_{x}\right\}$ commutative $\Rightarrow$ extends as algebra homom $\left\{p \in S\left(\mathfrak{a}_{\mathbb{C}}\right) \mapsto T_{p}\right\}$

Example: $\mathbb{D}(a, \Sigma, m)=\left.\mathbb{D}(G / K)\right|_{a}$ if $(a, \Sigma, m)$ is geometric.

## Heckman-Opdam's hypergeometric functions

- The symmetric space $\mathrm{G} / \mathrm{K}$ is replaced by a triple ( $\mathfrak{a}, \Sigma, m$ ) where:
$\mathfrak{a}=$ finite dim. Euclidean $\mathbb{R}$-vector space, inner product $\langle\cdot, \cdot\rangle$
$\Sigma=$ root system in $\mathfrak{a}^{*}$, with Weyl group $W$
$m=$ real multiplicity function on $\Sigma$
i.e. $m: \Sigma \rightarrow \mathbb{R}, W$-invariant: $m_{w \alpha}=m_{\alpha}$ for all $\alpha \in \Sigma, w \in W$
$(\mathfrak{a}, \Sigma, m)$ is geometric if from a Riemannian symm space of the noncompact type
- Commutative family $\mathbb{D}$ of differential operators associated with $(\mathfrak{a}, \Sigma, m)$ :

For $x \in \mathfrak{a}$ the Cherednik operator $T_{x}$ is the difference-reflection operator on $\mathfrak{a}$ (or $\mathfrak{a}_{\mathbb{C}}$ ) defined for $f \in C^{\infty}(\mathfrak{a})$ and $H \in \mathfrak{a}$ by

$$
T_{x} f(H)=\partial_{x} f(H)+\sum_{\alpha \in \Sigma^{+}} m_{\alpha} \alpha(x) \frac{f(H)-f\left(r_{\alpha} H\right)}{1-e^{-2 \alpha(H)}}-\rho(m)(x) f(H)
$$

where: $r_{\alpha}=$ reflection across ker $\alpha$,
$\rho(m)=\frac{1}{2} \sum_{\alpha \in \Sigma^{+}} m_{\alpha} \alpha$.
$\left\{x \in \mathfrak{a} \mapsto T_{x}\right\}$ commutative $\Rightarrow$ extends as algebra homom $\left\{p \in S\left(\mathfrak{a}_{\mathbb{C}}\right) \mapsto T_{p}\right\}$

- If $p \in S\left(\mathfrak{a}_{\mathbb{C}}\right)^{w}$, then $D_{p}:=\left.T_{p}\right|_{C^{\infty}(\mathfrak{a})^{w}}$ is a diff operator on $\mathfrak{a}$ (or $\mathfrak{a}_{\mathbb{C}}$ ).

$$
\mathbb{D}(\mathfrak{a}, \Sigma, m):=\left\{D_{p}: p \in S\left(\mathfrak{a}_{\mathbb{C}}\right)^{w}\right\}
$$

## Heckman-Opdam's hypergeometric functions

- The symmetric space $\mathrm{G} / \mathrm{K}$ is replaced by a triple $(\mathfrak{a}, \Sigma, m$ ) where:
$\mathfrak{a}=$ finite dim. Euclidean $\mathbb{R}$-vector space, inner product $\langle\cdot, \cdot\rangle$
$\Sigma=$ root system in $\mathfrak{a}^{*}$, with Weyl group $W$
$m=$ real multiplicity function on $\Sigma$
i.e. $m: \Sigma \rightarrow \mathbb{R}, W$-invariant: $m_{w \alpha}=m_{\alpha}$ for all $\alpha \in \Sigma, w \in W$
$(\mathfrak{a}, \Sigma, m)$ is geometric if from a Riemannian symm space of the noncompact type
- Commutative family $\mathbb{D}$ of differential operators associated with $(\mathfrak{a}, \Sigma, m)$ :

For $x \in \mathfrak{a}$ the Cherednik operator $T_{x}$ is the difference-reflection operator on $\mathfrak{a}$ (or $\mathfrak{a}_{\mathbb{C}}$ ) defined for $f \in C^{\infty}(\mathfrak{a})$ and $H \in \mathfrak{a}$ by

$$
T_{x} f(H)=\partial_{x} f(H)+\sum_{\alpha \in \Sigma^{+}} m_{\alpha} \alpha(x) \frac{f(H)-f\left(r_{\alpha} H\right)}{1-e^{-2 \alpha(H)}}-\rho(m)(x) f(H)
$$

where: $r_{\alpha}=$ reflection across ker $\alpha$,
$\rho(m)=\frac{1}{2} \sum_{\alpha \in \Sigma^{+}} m_{\alpha} \alpha$.
$\left\{x \in \mathfrak{a} \mapsto T_{x}\right\}$ commutative $\Rightarrow$ extends as algebra homom $\left\{p \in S\left(\mathfrak{a}_{\mathbb{C}}\right) \mapsto T_{p}\right\}$

- If $p \in S\left(\mathfrak{a}_{\mathbb{C}}\right)^{w}$, then $D_{p}:=\left.T_{p}\right|_{C^{\infty}(\mathfrak{a})^{w}}$ is a diff operator on $\mathfrak{a}$ (or $\left.\mathfrak{a}_{\mathbb{C}}\right)$.

$$
\mathbb{D}(\mathfrak{a}, \Sigma, m):=\left\{D_{p}: p \in S\left(\mathfrak{a}_{\mathbb{C}}\right)^{w}\right\}
$$

Example: $\mathbb{D}(\mathfrak{a}, \Sigma, m)=\left.\mathbb{D}(G / K)\right|_{\mathfrak{a}}$ if $(\mathfrak{a}, \Sigma, m)$ is geometric.

- Hypergeometric function of spectral parameter $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ :
unique $W$-invariant analytic function $F_{\lambda}$ on $\mathfrak{a}$ which satisfies the system of diff eqs

$$
\begin{aligned}
& D_{p} F_{\lambda}=p(\lambda) F_{\lambda}, \quad p \in S\left(\mathfrak{a}_{\mathbb{C}}\right)^{w}, \\
& F_{\lambda}(0)=1
\end{aligned}
$$

Then: $F_{w \lambda}=F_{\lambda}$ for all $w \in W$.
Examples:
$(a, \Sigma, m)$ geometric: $a \equiv \exp a \cdot o \subset G / K$
$F_{\lambda} \equiv \varphi_{\lambda}$ Harish-Chandra's spherical function of spectral parameter $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$
(2) rank-one (i.e. $\operatorname{dim}_{\mathbb{R}} \mathfrak{a}=1$ ): Jacobi function of 2 nd kind
$F_{\lambda}(x)={ }_{2} F\left(\frac{m_{\alpha} / 2+m_{2 \alpha}+\lambda}{2}, \frac{m_{\alpha} / 2+m_{2 \alpha}-\lambda}{2} ; \frac{m_{\alpha} / 2+m_{2 \alpha}+1}{2} ;-\sinh ^{2} x\right)$

- Nonsymmetric hypergeometric function of spectral param $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ (Opdam, 1995): unique analytic function $G_{\lambda}$ on $\mathfrak{a}$ which satisfies the system of diff-difference equations

$$
\begin{aligned}
& T_{x} G_{\lambda}=\lambda(x) G_{\lambda} \\
& G_{\lambda}(0)=1
\end{aligned}
$$

- Relation: $F_{\lambda}(x)=\frac{1}{|W|} \sum_{w \in W} G_{\lambda}(w x)$
- No integral formulas for $F_{\lambda}$ and $G_{\lambda}$.
- Hypergeometric function of spectral parameter $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ :
unique $W$-invariant analytic function $F_{\lambda}$ on $\mathfrak{a}$ which satisfies the system of diff eqs

$$
\begin{aligned}
& D_{p} F_{\lambda}=p(\lambda) F_{\lambda}, \quad p \in S\left(\mathfrak{a}_{\mathbb{C}}\right)^{W}, \\
& F_{\lambda}(0)=1
\end{aligned}
$$

Then: $F_{w \lambda}=F_{\lambda}$ for all $w \in W$.
Examples:
$(\mathfrak{a}, \Sigma, m)$ geometric: $\mathfrak{a} \equiv \exp \mathfrak{a} \cdot o \subset G / K$
$F_{\lambda} \equiv \varphi_{\lambda}$ Harish-Chandra's spherical function of spectral parameter $\lambda \in a^{*}$
(2) rank-one (i.e. dimp $a=1$ ): Jacobi function of 2nd kind
$F_{\lambda}(x)={ }_{2} F_{1}\left(\frac{m_{\alpha} / 2+m_{2 \alpha}+\lambda}{2}, \frac{m_{\alpha} / 2+m_{2 \alpha}-\lambda}{2} ; \frac{m_{\alpha} / 2+m_{2 \alpha}+1}{2} ;-\sinh ^{2} x\right)$

- Nonsymmetric hypergeometric function of spectral param $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ (Opdam, 1995):
unique analytic function $G_{\lambda}$ on $\mathfrak{a}$ which satisfies the system of diff-difference equations
$G_{\lambda}(0)=1$
- Relation: $F_{\lambda}(x)=\frac{1}{w} \sum_{w \in w} G_{\lambda}(w x)$
- No integral formulas for $F_{\lambda}$ and $G_{\lambda}$.
- Hypergeometric function of spectral parameter $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ :
unique $W$-invariant analytic function $F_{\lambda}$ on $\mathfrak{a}$ which satisfies the system of diff eqs

$$
\begin{aligned}
& D_{p} F_{\lambda}=p(\lambda) F_{\lambda}, \quad p \in S\left(\mathfrak{a}_{\mathbb{C}}\right)^{w}, \\
& F_{\lambda}(0)=1
\end{aligned}
$$

Then: $F_{w \lambda}=F_{\lambda}$ for all $w \in W$.
Examples:
(1) $(\mathfrak{a}, \Sigma, m)$ geometric: $\mathfrak{a} \equiv \exp \mathfrak{a} \cdot o \subset G / K$
$F_{\lambda} \equiv \varphi_{\lambda}$ Harish-Chandra's spherical function of spectral parameter $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ ramk-one (.e. aime a = ). vacoiviunction of 2na kinc


- Nonsymmetric hypergeometric function of spectral param $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ (Opdam, 1995): unique analytic function $G_{\lambda}$ on $\mathfrak{a}$ which satisfies the system of diff-difference equations

- Relation: $F_{\lambda}(x)=\frac{1}{|W|} \sum_{w \in W} G_{\lambda}(w x)$
- No integral formulas for $F_{\lambda}$ and $G_{x}$.
- Hypergeometric function of spectral parameter $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ :
unique $W$-invariant analytic function $F_{\lambda}$ on $\mathfrak{a}$ which satisfies the system of diff eqs

$$
\begin{aligned}
& D_{p} F_{\lambda}=p(\lambda) F_{\lambda}, \quad p \in S\left(\mathfrak{a}_{\mathbb{C}}\right)^{w}, \\
& F_{\lambda}(0)=1
\end{aligned}
$$

Then: $F_{w \lambda}=F_{\lambda}$ for all $w \in W$.
Examples:
(1) $(\mathfrak{a}, \Sigma, m)$ geometric: $\mathfrak{a} \equiv \exp \mathfrak{a} \cdot o \subset G / K$
$F_{\lambda} \equiv \varphi_{\lambda}$ Harish-Chandra's spherical function of spectral parameter $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$
(2) rank-one (i.e. $\operatorname{dim}_{\mathbb{R}} \mathfrak{a}=1$ ): Jacobi function of 2nd kind

$$
F_{\lambda}(x)={ }_{2} F_{1}\left(\frac{m_{\alpha} / 2+m_{2 \alpha}+\lambda}{2}, \frac{m_{\alpha} / 2+m_{2 \alpha}-\lambda}{2} ; \frac{m_{\alpha} / 2+m_{2 \alpha}+1}{2} ;-\sinh ^{2} x\right)
$$

- Nonsymmetric hypergeometric function of spectral param $\lambda \in a_{C}^{*}$ (Opdam, 1995) unique analytic function $G_{\lambda}$ on $\mathfrak{a}$ which satisfies the system of diff-difference equations

- Relation: $F_{\lambda}(x)=\frac{1}{|w|} \sum_{w \in W} G_{\lambda}(w x)$
- No integral formulas for $F_{\lambda}$ and $G_{\lambda}$
- Hypergeometric function of spectral parameter $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ :
unique $W$-invariant analytic function $F_{\lambda}$ on $\mathfrak{a}$ which satisfies the system of diff eqs

$$
\begin{aligned}
& D_{p} F_{\lambda}=p(\lambda) F_{\lambda}, \quad p \in S\left(\mathfrak{a}_{\mathbb{C}}\right)^{w}, \\
& F_{\lambda}(0)=1
\end{aligned}
$$

Then: $F_{w \lambda}=F_{\lambda}$ for all $w \in W$.

## Examples:

(1) $(\mathfrak{a}, \Sigma, m)$ geometric: $\mathfrak{a} \equiv \exp \mathfrak{a} \cdot o \subset G / K$
$F_{\lambda} \equiv \varphi_{\lambda}$ Harish-Chandra's spherical function of spectral parameter $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$
(2) rank-one (i.e. $\operatorname{dim}_{\mathbb{R}} \mathfrak{a}=1$ ): Jacobi function of 2 nd kind

$$
F_{\lambda}(x)={ }_{2} F_{1}\left(\frac{m_{\alpha} / 2+m_{2 \alpha}+\lambda}{2}, \frac{m_{\alpha} / 2+m_{2 \alpha}-\lambda}{2} ; \frac{m_{\alpha} / 2+m_{2 \alpha}+1}{2} ;-\sinh ^{2} x\right)
$$

- Nonsymmetric hypergeometric function of spectral param $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ (Opdam, 1995): unique analytic function $G_{\lambda}$ on $\mathfrak{a}$ which satisfies the system of diff-difference equations

$$
\begin{aligned}
& T_{x} G_{\lambda}=\lambda(x) G_{\lambda}, \quad x \in \mathfrak{a}, \\
& G_{\lambda}(0)=1
\end{aligned}
$$

- Hypergeometric function of spectral parameter $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ :
unique $W$-invariant analytic function $F_{\lambda}$ on $\mathfrak{a}$ which satisfies the system of diff eqs

$$
\begin{aligned}
& D_{p} F_{\lambda}=p(\lambda) F_{\lambda}, \quad p \in S\left(\mathfrak{a}_{\mathbb{C}}\right)^{w}, \\
& F_{\lambda}(0)=1
\end{aligned}
$$

Then: $F_{w \lambda}=F_{\lambda}$ for all $w \in W$.

## Examples:

(1) $(\mathfrak{a}, \Sigma, m)$ geometric: $\mathfrak{a} \equiv \exp \mathfrak{a} \cdot o \subset G / K$
$F_{\lambda} \equiv \varphi_{\lambda}$ Harish-Chandra's spherical function of spectral parameter $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$
(2) rank-one (i.e. $\operatorname{dim}_{\mathbb{R}} \mathfrak{a}=1$ ): Jacobi function of 2 nd kind

$$
F_{\lambda}(x)={ }_{2} F_{1}\left(\frac{m_{\alpha} / 2+m_{2 \alpha}+\lambda}{2}, \frac{m_{\alpha} / 2+m_{2 \alpha}-\lambda}{2} ; \frac{m_{\alpha} / 2+m_{2 \alpha}+1}{2} ;-\sinh ^{2} x\right)
$$

- Nonsymmetric hypergeometric function of spectral param $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ (Opdam, 1995): unique analytic function $G_{\lambda}$ on $\mathfrak{a}$ which satisfies the system of diff-difference equations

$$
\begin{aligned}
& T_{x} G_{\lambda}=\lambda(x) G_{\lambda}, \quad x \in \mathfrak{a}, \\
& G_{\lambda}(0)=1
\end{aligned}
$$

- Relation: $F_{\lambda}(x)=\frac{1}{|w|} \sum_{w \in W} G_{\lambda}(w x)$.
- Hypergeometric function of spectral parameter $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ :
unique $W$-invariant analytic function $F_{\lambda}$ on $\mathfrak{a}$ which satisfies the system of diff eqs

$$
\begin{aligned}
& D_{p} F_{\lambda}=p(\lambda) F_{\lambda}, \quad p \in S\left(\mathfrak{a}_{\mathbb{C}}\right)^{w}, \\
& F_{\lambda}(0)=1
\end{aligned}
$$

Then: $F_{w \lambda}=F_{\lambda}$ for all $w \in W$.

## Examples:

(1) $(\mathfrak{a}, \Sigma, m)$ geometric: $\mathfrak{a} \equiv \exp \mathfrak{a} \cdot o \subset G / K$
$F_{\lambda} \equiv \varphi_{\lambda}$ Harish-Chandra's spherical function of spectral parameter $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$
(2) rank-one (i.e. $\operatorname{dim}_{\mathbb{R}} \mathfrak{a}=1$ ): Jacobi function of 2nd kind

$$
F_{\lambda}(x)={ }_{2} F_{1}\left(\frac{m_{\alpha} / 2+m_{2 \alpha}+\lambda}{2}, \frac{m_{\alpha} / 2+m_{2 \alpha}-\lambda}{2} ; \frac{m_{\alpha} / 2+m_{2 \alpha}+1}{2} ;-\sinh ^{2} x\right)
$$

- Nonsymmetric hypergeometric function of spectral param $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ (Opdam, 1995): unique analytic function $G_{\lambda}$ on $\mathfrak{a}$ which satisfies the system of diff-difference equations

$$
\begin{aligned}
& T_{x} G_{\lambda}=\lambda(x) G_{\lambda}, \quad x \in \mathfrak{a}, \\
& G_{\lambda}(0)=1
\end{aligned}
$$

- Relation: $F_{\lambda}(x)=\frac{1}{|w|} \sum_{w \in W} G_{\lambda}(w x)$.
- No integral formulas for $F_{\lambda}$ and $G_{\lambda}$.

Estimates for $m_{\alpha} \geq 0$ for all $\alpha \in \Sigma$

- Basic estimate (Schapira, 2008):
(1) $F_{\lambda}$ real and positive if $\lambda \in \mathfrak{a}^{*}$
(2) $\left|F_{\lambda}\right| \leq F_{\operatorname{Re} \lambda}$ for all $\lambda \in \mathfrak{a}_{\mathrm{C}}^{*}$

Notation.
for $f, g: D \rightarrow(0,+\infty)$, write $f \asymp g$ if $\exists C_{1}>0, C_{2}>0$ so that $C_{1} g(x) \leq f(x) \leq C_{2} g(x)$ for all $x \in D$.

## Sharn Harish-Chandra estimates:

Theorem (Anker (1987, $\lambda=0)$, Schapira (2008), Narayanan-P.-Pusti (2014))
Let $\lambda \in \overline{\left(\mathfrak{a}^{*}\right)^{+}}$. Then for all $x \in \overline{\mathfrak{a}^{+}}$

where $\Sigma_{\lambda}^{0}=\left\{\alpha \in \Sigma^{+}: \alpha / 2 \notin \Sigma,\langle\alpha, \lambda\rangle \stackrel{\lambda}{=} 0\right\}$

## Analogue of Helgason-Johnson theorem:

$C(\rho(m))=$ convex hull in $\mathfrak{a}^{*}$ of $\{w \rho(m): w \in W\}$
Theorem (Narayanan-P.-Pusti (2014))
$F_{\lambda}(m)$ is bounded if and only if $\lambda \in C(\rho(m))+i a^{*}$. In this case, $\left|F_{\lambda}(x)\right| \leq 1$ for all

Estimates for $m_{\alpha} \geq 0$ for all $\alpha \in \Sigma$

- Basic estimate (Schapira, 2008):
(1) $F_{\lambda}$ real and positive if $\lambda \in \mathfrak{a}^{*}$
(2) $\left|F_{\lambda}\right| \leq F_{\operatorname{Re} \lambda}$ for all $\lambda \in \mathfrak{a}_{\mathrm{C}}^{*}$


## Notation:

for $f, g: D \rightarrow(0,+\infty)$, write $f \asymp g$ if $\exists C_{1}>0, C_{2}>0$ so that $C_{1} g(x) \leq f(x) \leq C_{2} g(x)$ for all $x \in D$.

## Sharp Harish-Chandra estimates:



## Analogue of Helgason-Johnson theorem:

$C(\rho(m))=$ convex hull in $\mathfrak{a}^{*}$ of $\{w \rho(m): w \in W\}$
Theorem (Narayanan-P.-Pusti (2014))
$F_{\lambda}(m)$ is bounded if and only if $\lambda \in C(\rho(m))+i a^{*}$. In this case, $\left|F_{\lambda}(x)\right| \leq 1$ for all

Estimates for $m_{\alpha} \geq 0$ for all $\alpha \in \Sigma$

- Basic estimate (Schapira, 2008):
(1) $F_{\lambda}$ real and positive if $\lambda \in \mathfrak{a}^{*}$
(2) $\left|F_{\lambda}\right| \leq F_{\text {Re } \lambda}$ for all $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$

Notation:
for $f, g: D \rightarrow(0,+\infty)$, write $f \asymp g$ if $\exists C_{1}>0, C_{2}>0$ so that $C_{1} g(x) \leq f(x) \leq C_{2} g(x)$ for all $x \in D$.

## Sharp Harish-Chandra estimates:

Theorem (Anker (1987, $\lambda=0$ ), Schapira (2008), Narayanan-P.-Pusti (2014))
Let $\lambda \in \overline{\left(\mathfrak{a}^{*}\right)^{+}}$. Then for all $x \in \overline{\mathfrak{a}^{+}}$

$$
F_{\lambda}(m ; x) \asymp\left[\prod_{-0}(1+\alpha(x))\right] e^{(\lambda-\rho(m))(x)}
$$

where $\Sigma_{\lambda}^{0}=\left\{\alpha \in \Sigma^{+}: \alpha / 2 \notin \Sigma,\langle\alpha, \lambda\rangle \stackrel{\alpha \in \Sigma_{\lambda}^{0}}{=} 0\right\}$.

Analogue of Helgason-Johnson theorem:
$\square$
$F_{\lambda}(m)$ is bounded if and only if $\lambda \in C(\rho(m))+i a^{*}$. In this case, $\left|F_{\lambda}(x)\right| \leq 1$ for all

Estimates for $m_{\alpha} \geq 0$ for all $\alpha \in \Sigma$

- Basic estimate (Schapira, 2008):
(1) $F_{\lambda}$ real and positive if $\lambda \in \mathfrak{a}^{*}$
(2) $\left|F_{\lambda}\right| \leq F_{\operatorname{Re} \lambda}$ for all $\lambda \in \mathfrak{a}_{\mathrm{C}}^{*}$


## Notation:

for $f, g: D \rightarrow(0,+\infty)$, write $f \asymp g$ if $\exists C_{1}>0, C_{2}>0$ so that $C_{1} g(x) \leq f(x) \leq C_{2} g(x)$ for all $x \in D$.

## Sharp Harish-Chandra estimates:

Theorem (Anker (1987, $\lambda=0$ ), Schapira (2008), Narayanan-P.-Pusti (2014))
Let $\lambda \in \overline{\left(\mathfrak{a}^{*}\right)^{+}}$. Then for all $x \in \overline{\mathfrak{a}^{+}}$

$$
F_{\lambda}(m ; x) \asymp\left[\prod_{-n}(1+\alpha(x))\right] e^{(\lambda-\rho(m))(x)}
$$

where $\Sigma_{\lambda}^{0}=\left\{\alpha \in \Sigma^{+}: \alpha / 2 \notin \Sigma,\langle\alpha, \lambda\rangle \stackrel{\alpha \in \Sigma_{\lambda}^{0}}{=} 0\right\}$.

## Analogue of Helgason-Johnson theorem:

$C(\rho(m))=$ convex hull in $\mathfrak{a}^{*}$ of $\{w \rho(m): w \in W\}$

## Theorem (Narayanan-P.-Pusti (2014))

$F_{\lambda}(m)$ is bounded if and only if $\lambda \in C(\rho(m))+i a^{*}$. In this case, $\left|F_{\lambda}(x)\right| \leq 1$ for all $x \in \mathfrak{a}$.

## Generalizations

Heckman-Opdam's
hypergeometric functions
(Koornwinder, Heckman \& Opdam, Cherednik,...)

Spherical functions on a
Riem. symmetric space $G / K$ of the noncompact type
(Harish-Chandra, Helgason,...)
$\tau$-spherical functions on the
homog. vector bundle over
G/K associated with $\tau$
( $\tau=$ irr. unitary rep of $K$ )
(Godement, Harish-Chandra,...)

## Two questions:

- Restricted to $A$, can $\tau$-spherical functions for arbitrary $\tau$ be expressed in terms of Heckman-Opdam hyergeometric functions?
- Can one prove an analog of Helgason-Johnson's theorem for the $\tau$-spherical functions (and their generalizations)?


## Generalizations



Spherical functions on a Riem. symmetric space $G / K$ of the noncompact type
(Harish-Chandra, Helgason,...)
$\tau$-spherical functions on the
homog. vector bundle over
$G / K$ associated with $\tau$ ( $\tau=$ irr. unitary rep of $K$ )
(Godement. Harish-Chandra ...)

- Restricted to $A$, can $\tau$-spherical functions for arbitrary $\tau$ be expressed in terms of Heckman-Opdam hyergeometric functions?
- Can one prove an analog of Helgason-Johnson's theorem for the $\tau$-spherical functions (and their generalizations)?


## Generalizations

Heckman-Opdam's hypergeometric functions

Spherical functions on a Riem. symmetric space $G / K$ of the noncompact type
(Harish-Chandra, Helgason,...)

$\tau$-spherical functions on the homog. vector bundle over G/K associated with $\tau$ ( $\tau=$ irr. unitary rep of $K$ )

## Two questions:

- Restricted to $A$, can $\tau$-spherical functions for arbitrary $\tau$ be expressed in terms of Heckman-Opdam hyergeometric functions?
- Can one prove an analog of Helgason-Johnson's theorem for the $\tau$-spherical functions (and their generalizations)?


## Generalizations



Spherical functions on a Riem. symmetric space $G / K$ of the noncompact type
(Harish-Chandra, Helgason,...)

$$
\cap \quad[\tau=1]
$$

$\tau$-spherical functions on the homog. vector bundle over $G / K$ associated with $\tau$ ( $\tau=$ irr. unitary rep of $K$ )
(Godement, Harish-Chandra,...)

- Restricted to $A$, can $\tau$-spherical functions for arbitrary $\tau$ be expressed in terms of Heckman-Opdam hyergeometric functions?
- Can one prove an analog of Helgason-Johnson's theorem for the $\tau$-spherical functions (and their generalizations)?


## Generalizations

## Heckman-Opdam's hypergeometric functions

Spherical functions on a Riem. symmetric space $G / K$ of the noncompact type
(Harish-Chandra, Helgason,...)
$\tau$-spherical functions on the homog. vector bundle over G/K associated with $\tau$ ( $\tau=$ irr. unitary rep of $K$ )
(Godement, Harish-Chandra,...)

Two questions:

- Restricted to $A$, can $\tau$-spherical functions for arbitrary $\tau$ be expressed in terms of Heckman-Opdam hyergeometric functions?
- Can one prove an analog of Helgason-Johnson's theorem for the $\tau$-spherical functions (and their generalizations)?


## $\tau$-spherical functions on $G$

$\left(\tau, V_{\tau}\right)=$ finite dim irreducible representation of $K$
$f: G \rightarrow \operatorname{End}\left(V_{\tau}\right)$ is $\tau$-radial if $f\left(k_{1} g k_{2}\right)=\tau\left(k_{2}^{-1}\right) f(g) \tau\left(k_{1}^{-1}\right),{ }^{\forall} g \in G,{ }^{\forall} k_{1}, k_{2} \in K$
$L^{1}(G / / K ; \tau)=\left\{f: G \rightarrow \operatorname{End}\left(V_{\tau}\right): L^{1}\right.$ and $\tau$-radial $\}$, convolution algebra
Ex.: $L^{1}(G / / K)$ if $\tau=1$.
(G.K. $\tau$ ) is a Gelfand triple if $L^{1}(G / / K ; \tau)$ is commutative.
smooth sections of the homogeneous vectori bungle $E_{\tau}$ on $G / K$ associated with $\tau$
$\mathbb{D}(G / K ; \tau)=$ algebra of $G$-invariant differential operators on $E_{\tau}$.

- $L^{1}(G / / K ; \tau)$ commutative $\Longleftrightarrow \mathbb{D}(G / K ; \tau)$ commutative

In this case:
$\tau$-spherical functions $=($ normalized $) \tau$-radial joint eigenfunctions of $\mathbb{D}(G / K ; \tau)$.
Other approaches are possible when $(G, K, \tau)$ not Gelfand: via representation theory (Harish-Chandra, Warner, Varadarajan...) or via $\mathbb{D}(G / K ; \tau)$ (Olbrich).
$G=K A K \leadsto \tau$-radial functions are uniquely determined by restriction to $A$.
$\tau$-spherical functions on $G$
$\left(\tau, V_{\tau}\right)=$ finite dim irreducible representation of $K$
$f: G \rightarrow \operatorname{End}\left(V_{\tau}\right)$ is $\tau$-radial if $f\left(k_{1} g k_{2}\right)=\tau\left(k_{2}^{-1}\right) f(g) \tau\left(k_{1}^{-1}\right), \forall g \in G,{ }^{\forall} k_{1}, k_{2} \in K$
$L^{1}(G / / K ; \tau)=\left\{f: G \rightarrow \operatorname{End}\left(V_{\tau}\right): L^{1}\right.$ and $\tau$-radial $\}$, convolution algebra
Ex.: $L^{1}(G / / K)$ if $\tau=1$.
( $G, K, \tau$ ) is a Gelfand triple if $L^{1}(G / / K ; \tau)$ is commutative.
smooth sections of the homogeneous vectori bungle $E_{\tau}$ on $G / K$ associated with $\tau$
$\mathbb{D}(G / K ; \tau)=$ algebra of $G$-invariant differential operators on $E_{\tau}$

- $L^{1}(G / / K ; \tau)$ commutative $\Longleftrightarrow \mathbb{D}(G / K ; \tau)$ commutative

In this case:
$\tau$-spherical functions $=($ normalized $) \tau$-radial joint eigenfunctions of $\mathbb{D}(G / K ; \tau)$.
Other approaches are possible when ( $G, K, \tau$ ) not Gelfand: via representation theory (Harish-Chandra, Warner, Varadarajan...) or via $\mathbb{D}(G / K ; \tau)$ (Olbrich).
$G=K A K \leadsto \tau$-radial functions are uniquely determined by restriction to $A$.

## $\tau$-spherical functions on $G$

$\left(\tau, V_{\tau}\right)=$ finite dim irreducible representation of $K$
$f: G \rightarrow \operatorname{End}\left(V_{\tau}\right)$ is $\tau$-radial if $f\left(k_{1} g k_{2}\right)=\tau\left(k_{2}^{-1}\right) f(g) \tau\left(k_{1}^{-1}\right),{ }^{\forall} g \in G,{ }^{\forall} k_{1}, k_{2} \in K$
$L^{1}(G / / K ; \tau)=\left\{f: G \rightarrow \operatorname{End}\left(V_{\tau}\right): L^{1}\right.$ and $\tau$-radial $\}$, convolution algebra
Ex.: $L^{1}(G / / K)$ if $\tau=1$.
( $G, K, \tau$ ) is a Gelfand triple if $L^{1}(G / / K ; \tau)$ is commutative.
$C^{\infty}(G / K ; \tau)=\left\{F: G \rightarrow V_{\tau}: C^{\infty}\right.$ and $\left.F(g k)=\tau\left(k^{-1}\right) F(g),{ }^{\forall} g \in G,{ }^{\forall} k \in K\right\}$ smooth sections of the homogeneous vectori bungle $E_{\tau}$ on $G / K$ associated with $\tau$ $\mathbb{D}(G / K ; \tau)=$ algebra of $G$-invariant differential operators on $E_{\tau}$.

$$
\bullet
$$

In this case:
$\tau$-spherical functions $=($ normalized $) \tau$-radial joint eigenfunctions of $\mathbb{D}(G / K ; \tau)$ Other approaches are possible when ( $G, K, \tau$ ) not Gelfand: via representation theory (Harish-Chandra, Warner, Varadarajan...) or via $\mathbb{D}(G / K ; \tau)$ (Olbrich).
$G=K A K \leadsto \tau$-radial functions are uniquely determined by restriction to $A$.

## $\tau$-spherical functions on $G$

$\left(\tau, V_{\tau}\right)=$ finite dim irreducible representation of $K$
$f: G \rightarrow \operatorname{End}\left(V_{\tau}\right)$ is $\tau$-radial if $f\left(k_{1} g k_{2}\right)=\tau\left(k_{2}^{-1}\right) f(g) \tau\left(k_{1}^{-1}\right),{ }^{\forall} g \in G,{ }^{\forall} k_{1}, k_{2} \in K$
$L^{1}(G / / K ; \tau)=\left\{f: G \rightarrow \operatorname{End}\left(V_{\tau}\right): L^{1}\right.$ and $\tau$-radial $\}$, convolution algebra
Ex.: $L^{1}(G / / K)$ if $\tau=1$.
( $G, K, \tau$ ) is a Gelfand triple if $L^{1}(G / / K ; \tau)$ is commutative.
$C^{\infty}(G / K ; \tau)=\left\{F: G \rightarrow V_{\tau}: C^{\infty}\right.$ and $\left.F(g k)=\tau\left(k^{-1}\right) F(g),{ }^{\forall} g \in G,{ }^{\forall} k \in K\right\}$ smooth sections of the homogeneous vectori bungle $E_{\tau}$ on $G / K$ associated with $\tau$ $\mathbb{D}(G / K ; \tau)=$ algebra of $G$-invariant differential operators on $E_{\tau}$.

- $L^{1}(G / / K ; \tau)$ commutative $\Longleftrightarrow \mathbb{D}(G / K ; \tau)$ commutative In this case:
$\tau$-spherical functions $=($ normalized $) \tau$-radial joint eigenfunctions of $\mathbb{D}(G / K ; \tau)$.
Other approaches are possible when $(G, K, \tau)$ not Gelfand: via representation theory
$G=K A K \leadsto \tau$-radial functions are uniquely determined by restriction to $A$.


## $\tau$-spherical functions on $G$

$\left(\tau, V_{\tau}\right)=$ finite dim irreducible representation of $K$
$f: G \rightarrow \operatorname{End}\left(V_{\tau}\right)$ is $\tau$-radial if $f\left(k_{1} g k_{2}\right)=\tau\left(k_{2}^{-1}\right) f(g) \tau\left(k_{1}^{-1}\right),{ }^{\forall} g \in G,{ }^{\forall} k_{1}, k_{2} \in K$
$L^{1}(G / / K ; \tau)=\left\{f: G \rightarrow \operatorname{End}\left(V_{\tau}\right): L^{1}\right.$ and $\tau$-radial $\}$, convolution algebra
Ex.: $L^{1}(G / / K)$ if $\tau=1$.
( $G, K, \tau$ ) is a Gelfand triple if $L^{1}(G / / K ; \tau)$ is commutative.
$C^{\infty}(G / K ; \tau)=\left\{F: G \rightarrow V_{\tau}: C^{\infty}\right.$ and $\left.F(g k)=\tau\left(k^{-1}\right) F(g),{ }^{\forall} g \in G,{ }^{\forall} k \in K\right\}$ smooth sections of the homogeneous vectori bungle $E_{\tau}$ on $G / K$ associated with $\tau$
$\mathbb{D}(G / K ; \tau)=$ algebra of $G$-invariant differential operators on $E_{\tau}$.

- $L^{1}(G / / K ; \tau)$ commutative $\Longleftrightarrow \mathbb{D}(G / K ; \tau)$ commutative

In this case:
$\tau$-spherical functions $=($ normalized $) \tau$-radial joint eigenfunctions of $\mathbb{D}(G / K ; \tau)$.
Other approaches are possible when ( $G, K, \tau$ ) not Gelfand: via representation theory (Harish-Chandra, Warner, Varadarajan...) or via $\mathbb{D}(G / K ; \tau)$ (Olbrich).

## $\tau$-spherical functions on $G$

$\left(\tau, V_{\tau}\right)=$ finite dim irreducible representation of $K$
$f: G \rightarrow \operatorname{End}\left(V_{\tau}\right)$ is $\tau$-radial if $f\left(k_{1} g k_{2}\right)=\tau\left(k_{2}^{-1}\right) f(g) \tau\left(k_{1}^{-1}\right),{ }^{\forall} g \in G,{ }^{\forall} k_{1}, k_{2} \in K$
$L^{1}(G / / K ; \tau)=\left\{f: G \rightarrow \operatorname{End}\left(V_{\tau}\right): L^{1}\right.$ and $\tau$-radial $\}$, convolution algebra
Ex.: $L^{1}(G / / K)$ if $\tau=1$.
( $G, K, \tau$ ) is a Gelfand triple if $L^{1}(G / / K ; \tau)$ is commutative.
$C^{\infty}(G / K ; \tau)=\left\{F: G \rightarrow V_{\tau}: C^{\infty}\right.$ and $\left.F(g k)=\tau\left(k^{-1}\right) F(g),{ }^{\forall} g \in G,{ }^{\forall} k \in K\right\}$ smooth sections of the homogeneous vectori bungle $E_{\tau}$ on $G / K$ associated with $\tau$
$\mathbb{D}(G / K ; \tau)=$ algebra of $G$-invariant differential operators on $E_{\tau}$.

- $L^{1}(G / / K ; \tau)$ commutative $\Longleftrightarrow \mathbb{D}(G / K ; \tau)$ commutative

In this case:
$\tau$-spherical functions $=($ normalized $) \tau$-radial joint eigenfunctions of $\mathbb{D}(G / K ; \tau)$.
Other approaches are possible when ( $G, K, \tau$ ) not Gelfand: via representation theory (Harish-Chandra, Warner, Varadarajan...) or via $\mathbb{D}(G / K ; \tau)$ (Olbrich).
$G=K A K \rightsquigarrow \tau$-radial functions are uniquely determined by restriction to $A$.

Restricted to $A$, can $\tau$-spherical functions be expressed in terms of Heckman-Opdam hyergeometric functions?

- Heckman-Opdam hypergeometric functions are joint eigenfunctions of a commuting algebra of differential operators.
The possible non-commutativity of $\mathbb{D}(G / K ; \tau)$ is an obstruction.
- Open question in general, even when $(G, K, \tau)$ is a Gelfand triple.
- Some positive answers:
$\checkmark \tau=1 \rightsquigarrow$ Heckman-Opdam theory (1989-1994)
$\Rightarrow \operatorname{dim} \tau=1 \rightsquigarrow G / K$ Hermitian symmetric space (Shimeno, 1994)
- Some rank-one cases:

G/K= real or complex hyperbolic spaces; case of differential forms or spinors
(Pedon 1997 \& 1999, Camporesi-Pedon 2001, Camporesi 2002)
$G / K=$ quaternionic hyperbolic spaces, $K=\operatorname{Sp}(1) \times \operatorname{Sp}(n), \tau=\tau_{0} \otimes 1$ (van Dijk-P. 1999).
$\Rightarrow$ When $\tau$ is a small $K$-type, i.e if $\left.\tau\right|_{M}$ is irreducible, where $M=Z_{K}(A)$ (Oda-Shimeno, 2019).

- In all the above examples, $(G, K, \tau)$ is a Gelfand triple.

Deitmar's condition: $(G, K, \tau)$ is a Gelfand triple $\left.\Longleftrightarrow \tau\right|_{M}$ is multiplicity free.

Restricted to $A$, can $\tau$-spherical functions be expressed in terms of Heckman-Opdam hyergeometric functions?

- Heckman-Opdam hypergeometric functions are joint eigenfunctions of a commuting algebra of differential operators.
The possible non-commutativity of $\mathbb{D}(G / K ; \tau)$ is an obstruction.
- Open question in general, even when $(G, K, \tau)$ is a Gelfand triple.
- Some positive answers:
$\triangleright \tau=1 \rightsquigarrow$ Heckman-Opdam theory (1989-1994)
$>\operatorname{dim} \tau=1 \rightsquigarrow G / K$ Hermitian symmetric space (Shimeno, 1994)
- Some rank-one cases:

G/K= real or complex hyperbolic spaces; case of differential forms or spinors
(Pedon 1997 \& 1999, Camporesi-Pedon 2001, Camporesi 2002)
$G / K=$ quaternionic hyperbolic spaces, $K=\operatorname{Sp}(1) \times \operatorname{Sp}(n), \tau=\tau_{0} \otimes 1$ (van Dijk-P. 1999).

- When $\tau$ is a small $K$ type, i.e. if $\tau^{\prime} M$ is irreducible, where $M=Z_{K}(A)$ (Oda-Shimeno, 2019).
- In all the above examples, $(G, K, \tau)$ is a Gelfand triple.

Deitmar's condition: $(G, K, \tau)$ is a Gelfand triple $\left.\Longleftrightarrow \tau\right|_{M}$ is multiplicity free.

Restricted to $A$, can $\tau$-spherical functions be expressed in terms of Heckman-Opdam hyergeometric functions?

- Heckman-Opdam hypergeometric functions are joint eigenfunctions of a commuting algebra of differential operators.
The possible non-commutativity of $\mathbb{D}(G / K ; \tau)$ is an obstruction.
- Open question in general, even when $(G, K, \tau)$ is a Gelfand triple.
- Some positive answers:
$\triangleright \tau=1 \rightsquigarrow$ Heckman-Opdam theory (1989-1994)
$\Rightarrow \operatorname{dim} \tau=1 \leadsto G / K$ Hermitian symmetric space (Shimeno, 1994)
- Some rank-one cases:

G/K= real or complex hyperbolic spaces; case of differential forms or spinors
(Pedon 1997 \& 1999, Camporesi-Pedon 2001, Camporesi 2002)
$G / K=$ quaternionic hyperbolic spaces, $K=\operatorname{Sp}(1) \times \operatorname{Sp}(n), \tau=\tau_{0} \otimes 1$ (van Dijk-P. 1999).

- When $\tau$ is a small $K$ type, i.e. if $\tau^{\prime} M$ is irreducible, where $M=Z_{K}(A)$ (Oda-Shimeno, 2019).
- In all the above examples, $(G, K, \tau)$ is a Gelfand triple.

Deitmar's condition: $(G, K, \tau)$ is a Gelfand triple $\left.\Longleftrightarrow \tau\right|_{M}$ is multiplicity free.

## Restricted to $A$, can $\tau$-spherical functions be expressed in terms of Heckman-Opdam hyergeometric functions?

- Heckman-Opdam hypergeometric functions are joint eigenfunctions of a commuting algebra of differential operators.
The possible non-commutativity of $\mathbb{D}(G / K ; \tau)$ is an obstruction.
- Open question in general, even when ( $G, K, \tau$ ) is a Gelfand triple.
- Some positive answers:
- $\tau=1 \rightsquigarrow$ Heckman-Opdam theory (1989-1994)
- $\operatorname{dim} \tau=1 \rightsquigarrow G / K$ Hermitian symmetric space (Shimeno, 1994)
- Some rank-one cases:
$\triangleright G / K=$ real or complex hyperbolic spaces; case of differential forms or spinors (Pedon 1997 \& 1999, Camporesi-Pedon 2001, Camporesi 2002)
$\triangleright G / K=$ quaternionic hyperbolic spaces, $K=\operatorname{Sp}(1) \times \operatorname{Sp}(n), \tau=\tau_{0} \otimes 1$ (van Dijk-P. 1999).
- When $\tau$ is a small $K$-type, i.e. if $\left.\tau\right|_{M}$ is irreducible, where $M=Z_{K}(A)$ (Oda-Shimeno, 2019).
- In all the above examples, ( $G, K, \tau$ ) is a Gelfand triple.

Deitmar's condition: $(G, K, \tau)$ is a Gelfand triple $\left.\Longleftrightarrow \tau\right|_{M}$ is multiplicity free.

## Restricted to $A$, can $\tau$-spherical functions be expressed in terms of Heckman-Opdam hyergeometric functions?

- Heckman-Opdam hypergeometric functions are joint eigenfunctions of a commuting algebra of differential operators.
The possible non-commutativity of $\mathbb{D}(G / K ; \tau)$ is an obstruction.
- Open question in general, even when ( $G, K, \tau$ ) is a Gelfand triple.
- Some positive answers:
- $\tau=1 \rightsquigarrow$ Heckman-Opdam theory (1989-1994)
- $\operatorname{dim} \tau=1 \rightsquigarrow G / K$ Hermitian symmetric space (Shimeno, 1994)
- Some rank-one cases:
$\triangleright G / K=$ real or complex hyperbolic spaces; case of differential forms or spinors (Pedon 1997 \& 1999, Camporesi-Pedon 2001, Camporesi 2002)
$\triangleright G / K=$ quaternionic hyperbolic spaces, $K=\mathrm{Sp}(1) \times \mathrm{Sp}(n), \tau=\tau_{0} \otimes 1$ (van Dijk-P. 1999).
- When $\tau$ is a small $K$-type, i.e. if $\left.\tau\right|_{M}$ is irreducible, where $M=Z_{K}(A)$ (Oda-Shimeno, 2019).
- In all the above examples, $(G, K, \tau)$ is a Gelfand triple.

Deitmar's condition: $(G, K, \tau)$ is a Gelfand triple $\left.\Longleftrightarrow \tau\right|_{M}$ is multiplicity free.

## $\tau$-spherical functions for a small $K$-type $\tau$

Oda-Shimeno's results:

- Case-by-case (using the classification of small $K$-types, which they completed).
- The restriction to $A$ of $\tau$-spherical functions are written in terms of Heckman-Opdam hypergeometric functions for a triple ( $\mathfrak{a}, \Sigma^{\tau}, m^{\tau}$ ), which is not necessarily the triple ( $\mathfrak{a}, \Sigma, m$ ) associated with $G / K$.
- "Written in terms of" means that Heckman-Opdam's hypergeometric functions are multiplied by suitable products of cosh- and sinh-like factors, depending on the two root systems.

Remarkable, but hard to deal with in a unified way.

- When $\Sigma^{\tau}$ is a $B C_{n}$ root system, it is possible to unify all these specific cases as elements of a 2-parameter deformation of Heckman-Opdam's hypergeometric functions.


## $\tau$-spherical functions for a small $K$-type $\tau$

Oda-Shimeno's results:

- Case-by-case (using the classification of small $K$-types, which they completed).
- The restriction to $A$ of $\tau$-spherical functions are written in terms of Heckman-Opdam hypergeometric functions for a triple ( $\mathfrak{a}, \Sigma^{\tau}, m^{\tau}$ ), which is not necessarily the triple ( $\mathfrak{a}, \Sigma, m$ ) associated with $G / K$.
- "Written in terms of" means that Heckman-Opdam's hypergeometric functions are multiplied by suitable products of cosh- and sinh-like factors, depending on the two root systems.
Remarkable, but hard to deal with in a unified way.
- When $\Sigma^{\tau}$ is a $B C_{n}$ root system, it is possible to unify all these specific cases as elements of a 2 -parameter deformation of Heckman-Opdam's hypergeometric functions.


## 2-parameter deformations of positive multiplicites

$\Sigma=$ root system in $\mathfrak{a}$ of type $B C_{r}$
$W=$ Weyl group of $\Sigma$
Three $W$-group orbits in $\Sigma$, distinguished by root lenght (short, middle and long roots)
$\Sigma^{+}=\Sigma_{\mathrm{s}}^{+} \sqcup \Sigma_{\mathrm{m}}^{+} \sqcup \Sigma_{1}^{+}$where
$\Sigma_{\mathrm{s}}^{+}=\left\{\frac{\beta_{j}}{2}: 1 \leq j \leq r\right\}, \quad \Sigma_{\mathrm{m}}^{+}=\left\{\frac{\beta_{j} \pm \beta_{j}}{2}: 1 \leq i<j \leq r\right\}, \quad \Sigma_{1}^{+}=\left\{\beta_{j}: 1 \leq j \leq r\right\}$.
Three values of multiplicities $m=\left(m_{\mathrm{s}}, m_{\mathrm{m}}, m_{\mathrm{l}}\right)$. Suppose these three values are $\geq 0$.
Consider $C_{r}$ as a $B C_{r}$ root system with $m_{s}=0$ and $A_{1}$ as a $B C_{1}$ with $m_{s}=m_{\mathrm{m}}=0$.
For any two real parameters $\ell, \widetilde{\ell}$ we define a deformation $m(\ell, \widetilde{\ell})$ of $m$ as follows:

$$
m_{\alpha}(\ell, \widetilde{\ell})= \begin{cases}m_{\mathrm{s}}+2 \ell & \text { if } \alpha \in \Sigma_{\mathrm{s}} \\ m_{\mathrm{m}}+2 \widetilde{\ell} & \text { if } \alpha \in \Sigma_{\mathrm{m}} \\ m_{1}-2 \ell & \text { if } \alpha \in \Sigma_{1}\end{cases}
$$

## 2-parameter deformations of positive multiplicites

$\Sigma=$ root system in $\mathfrak{a}$ of type $B C_{r}$
$W=$ Weyl group of $\Sigma$
Three $W$-group orbits in $\Sigma$, distinguished by root lenght (short, middle and long roots)
$\Sigma^{+}=\Sigma_{\mathrm{s}}^{+} \sqcup \Sigma_{\mathrm{m}}^{+} \sqcup \Sigma_{1}^{+}$where
$\Sigma_{\mathrm{s}}^{+}=\left\{\frac{\beta_{j}}{2}: 1 \leq j \leq r\right\}, \quad \Sigma_{\mathrm{m}}^{+}=\left\{\frac{\beta_{j} \pm \beta_{j}}{2}: 1 \leq i<j \leq r\right\}, \quad \Sigma_{1}^{+}=\left\{\beta_{j}: 1 \leq j \leq r\right\}$.
Three values of multiplicities $m=\left(m_{\mathrm{s}}, m_{\mathrm{m}}, m_{\mathrm{l}}\right)$. Suppose these three values are $\geq 0$.
Consider $C_{r}$ as a $B C_{r}$ root system with $m_{s}=0$ and $A_{1}$ as a $B C_{1}$ with $m_{s}=m_{\mathrm{m}}=0$.
For any two real parameters $\ell, \widetilde{\ell}$ we define a deformation $m(\ell, \widetilde{\ell})$ of $m$ as follows:

$$
m_{\alpha}(\ell, \widetilde{\ell})= \begin{cases}m_{\mathrm{s}}+2 \ell & \text { if } \alpha \in \Sigma_{\mathrm{s}} \\ m_{\mathrm{m}}+2 \widetilde{\ell} & \text { if } \alpha \in \Sigma_{\mathrm{m}} \\ m_{1}-2 \ell & \text { if } \alpha \in \Sigma_{1} .\end{cases}
$$

Rem: $\left(m_{\mathrm{s}}+2 \ell\right)+\left(m_{1}-2 \ell\right)=m_{\mathrm{s}}+m_{\mathrm{l}}$

$(\ell, \widetilde{\ell})$-hypergeometric functions
$u(x)=\prod_{j=1}^{r} \cosh \left(\frac{\beta_{j}(x)}{2}\right)$
$v(x)=\prod_{1 \leq i<j \leq r} \cosh \left(\frac{\beta_{j}(x)-\beta_{i}(x)}{2}\right) \cosh \left(\frac{\beta_{j}(x)+\beta_{i}(x)}{2}\right)$

- Commutative family of differential operators associated with $(a, \Sigma, m,(\ell, \widetilde{\ell})$ ):

For $x \in \mathfrak{a}$ the $(\ell, \widetilde{\ell})$-Cherednik operator $T_{x}$ is the difference-reflection operator on $\mathfrak{a}$ (or $\mathfrak{a}_{\mathbb{C}}$ ) defined by

$$
T_{\ell, \tilde{\ell}, x}(m)=u^{-\ell} v^{-\widetilde{\ell}} \circ T_{x}(m(\ell, \widetilde{\ell})) \circ u^{\ell} v^{\widetilde{\ell}}
$$

Hence
$T^{T} \quad(m)=u^{-\ell} v^{-\bar{l}} \circ T_{p}(m(\ell, \tilde{\ell})) \circ u^{\ell} v^{\bar{\ell}} \quad\left(p \in S\left(a_{c}\right)\right)$
$D_{\ell, \widetilde{\ell}, p}(m):=\left.T_{\ell, \widetilde{\ell}, p}(m)\right|_{C \infty(a)} w=u^{-\ell} v^{-\widetilde{\ell}} \circ D_{p}(m(\ell, \widetilde{\ell})) \circ u^{\ell} v^{\widetilde{\ell}} \quad\left(p \in S\left(a_{c}\right)^{w}\right)$

- $(\ell, \widetilde{\ell})$-hypergeometric function of spectral parameter $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ :
unique $W$-invariant analytic function $F_{\ell, \tilde{\ell}, \lambda}(m)$ on a satisfying the system of diff eqs

$$
\begin{aligned}
& D_{\ell, \tilde{\ell}, p}(m) F=p(\lambda) F \quad\left(p \in S\left(\mathfrak{a}_{\mathbb{C}}\right)^{W}\right), \\
& F(0)=1
\end{aligned}
$$

By construction,
$(\ell, \widetilde{\ell})$-hypergeometric functions
$u(x)=\prod_{j=1}^{r} \cosh \left(\frac{\beta_{j}(x)}{2}\right)$
$v(x)=\prod_{1 \leq i<j \leq r} \cosh \left(\frac{\beta_{j}(x)-\beta_{i}(x)}{2}\right) \cosh \left(\frac{\beta_{j}(x)+\beta_{i}(x)}{2}\right)$

- Commutative family of differential operators associated with $(\mathfrak{a}, \Sigma, m,(\ell, \widetilde{\ell})$ ):

For $x \in \mathfrak{a}$ the $(\ell, \widetilde{\ell})$-Cherednik operator $T_{x}$ is the difference-reflection operator on $\mathfrak{a}$ (or $\mathfrak{a}_{\mathrm{C}}$ ) defined by

$$
T_{\ell, \tilde{\ell}, x}(m)=u^{-\ell} v^{-\widetilde{\ell}} \circ T_{x}(m(\ell, \widetilde{\ell})) \circ u^{\ell} v^{\widetilde{\ell}}
$$

Hence
$T_{\ell, \widetilde{\ell}, p}(m)=u^{-\ell} v^{-\widetilde{\ell}} \circ T_{p}(m(\ell, \widetilde{\ell})) \circ u^{\ell} v^{\widetilde{\ell}} \quad\left(p \in S\left(\mathfrak{a}_{\mathrm{C}}\right)\right)$
$D_{\ell, \tilde{\ell}, p}(m):=\left.T_{\ell, \tilde{\ell}, p}(m)\right|_{c^{\infty}(\mathfrak{a})^{w}}=u^{-\ell} v^{-\widetilde{\ell}} \circ D_{p}(m(\ell, \widetilde{\ell})) \circ u^{\ell} v^{\widetilde{\ell}} \quad\left(p \in S\left(\mathfrak{a}_{\mathrm{C}}\right)^{w}\right)$

- $(\ell, \widetilde{\ell})$-hypergeometric function of spectral parameter $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ :
unique $W$-invariant analytic function $F_{\rho, \tilde{p}}(m)$ on a satisfying the system of diff eqs
$F(0)=1$
$(\ell, \widetilde{\ell})$-hypergeometric functions
$u(x)=\prod_{j=1}^{r} \cosh \left(\frac{\beta_{j}(x)}{2}\right)$
$v(x)=\prod_{1 \leq i<j \leq r} \cosh \left(\frac{\beta_{j}(x)-\beta_{i}(x)}{2}\right) \cosh \left(\frac{\beta_{j}(x)+\beta_{i}(x)}{2}\right)$
- Commutative family of differential operators associated with $(\mathfrak{a}, \Sigma, m,(\ell, \widetilde{\ell})$ ):

For $x \in \mathfrak{a}$ the ( $\ell, \widetilde{\ell}$ )-Cherednik operator $T_{x}$ is the difference-reflection operator on $\mathfrak{a}$ (or $\mathfrak{a}_{\mathrm{C}}$ ) defined by

$$
T_{\ell, \tilde{\ell}, x}(m)=u^{-\ell} v^{-\widetilde{\ell}} \circ T_{x}(m(\ell, \tilde{\ell})) \circ u^{\ell} v^{\widetilde{\ell}}
$$

Hence
$T_{\ell, \widetilde{\ell}, p}(m)=u^{-\ell} v^{-\widetilde{\ell}} \circ T_{p}(m(\ell, \widetilde{\ell})) \circ u^{\ell} v^{\widetilde{\ell}} \quad\left(p \in S\left(\mathfrak{a}_{\mathrm{C}}\right)\right)$
$D_{\ell, \tilde{\ell}, p}(m):=\left.T_{\ell, \tilde{\ell}, p}(m)\right|_{c_{\infty}(\mathfrak{a})^{w}}=u^{-\ell} v^{-\widetilde{\ell}} \circ D_{p}(m(\ell, \widetilde{\ell})) \circ u^{\ell} v^{\widetilde{\ell}} \quad\left(p \in S\left(\mathfrak{a}_{\mathbb{C}}\right)^{w}\right)$

- $(\ell, \widetilde{\ell})$-hypergeometric function of spectral parameter $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ : unique $W$-invariant analytic function $F_{\ell, \tilde{\ell}, \lambda}(m)$ on a satisfying the system of diff eqs

$$
\begin{aligned}
& D_{\ell, \tilde{\ell}, p}(m) F=p(\lambda) F \quad\left(p \in S\left(\mathfrak{a}_{\mathbb{C}}\right)^{w}\right) \\
& F(0)=1
\end{aligned}
$$

$(\ell, \widetilde{\ell})$-hypergeometric functions
$u(x)=\prod_{j=1}^{r} \cosh \left(\frac{\beta_{j}(x)}{2}\right)$
$v(x)=\prod_{1 \leq i<j \leq r} \cosh \left(\frac{\beta_{j}(x)-\beta_{i}(x)}{2}\right) \cosh \left(\frac{\beta_{j}(x)+\beta_{i}(x)}{2}\right)$

- Commutative family of differential operators associated with $(\mathfrak{a}, \Sigma, m,(\ell, \widetilde{\ell})$ ):

For $x \in \mathfrak{a}$ the ( $\ell, \widetilde{\ell}$ )-Cherednik operator $T_{x}$ is the difference-reflection operator on $\mathfrak{a}$ (or $\mathfrak{a}_{\mathrm{C}}$ ) defined by

$$
T_{\ell, \tilde{\ell}, x}(m)=u^{-\ell} v^{-\widetilde{\ell}} \circ T_{x}(m(\ell, \widetilde{\ell})) \circ u^{\ell} v^{\widetilde{\ell}}
$$

Hence
$T_{\ell, \widetilde{\ell}, p}(m)=u^{-\ell} v^{-\widetilde{\ell}} \circ T_{p}(m(\ell, \widetilde{\ell})) \circ u^{\ell} v^{\widetilde{\ell}} \quad\left(p \in S\left(\mathfrak{a}_{\mathrm{C}}\right)\right)$
$D_{\ell, \tilde{\ell}, p}(m):=\left.T_{\ell, \tilde{\ell}, p}(m)\right|_{c_{\infty}(\mathfrak{a})^{w}}=u^{-\ell} v^{-\widetilde{\ell}} \circ D_{p}(m(\ell, \widetilde{\ell})) \circ u^{\ell} v^{\widetilde{\ell}} \quad\left(p \in S\left(\mathfrak{a}_{\mathbb{C}}\right)^{w}\right)$

- $(\ell, \widetilde{\ell})$-hypergeometric function of spectral parameter $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ : unique $W$-invariant analytic function $F_{\ell, \tilde{\ell}, \lambda}(m)$ on a satisfying the system of diff eqs

$$
\begin{aligned}
& D_{\ell, \tilde{\ell}, p}(m) F=p(\lambda) F \quad\left(p \in S\left(\mathfrak{a}_{\mathbb{C}}\right)^{w}\right) \\
& F(0)=1
\end{aligned}
$$

By construction,

$$
F_{\ell, \tilde{\ell}, \lambda}(m)=u^{-\ell} v^{-\tilde{\ell}} F_{\lambda}(m(\ell, \widetilde{\ell}))
$$

## Examples

(1) Write $m(I)$ and $F_{\ell, \lambda}$ if $\tilde{\ell}=0$.

If $m=\left(m_{\mathrm{s}}, m_{\mathrm{m}}, m_{1}=1\right)$ is a geometric multiplicity corresponding to a Hermitian symmetric space $G / K$, then the

$$
F_{\ell, \lambda}=u^{-\ell} F_{\lambda}(m(\ell))
$$

are the restrictions to $A \equiv \mathfrak{a}$ of the spherical $\tau_{\ell}$-functions, where $\operatorname{dim} \tau_{\ell}=1$ (Shimeno, 1994).
(2) More generally, every $\tau$-spherical function for $G / K$ where $\tau$ is a small $K$-type and $G / K$ has restricted root system of type $B C$ is a $(\ell, \widetilde{\ell})$-hypergeometric function for suitable choices of $(\Sigma, m,(\ell, \overparen{\ell}))$ where $m=\left(m_{\mathrm{s}}, m_{\mathrm{m}}, m_{1}\right)$ is a positive mutliplicity on $\Sigma$.
$\rightsquigarrow$ case-by-case
$\rightsquigarrow \Sigma$ and $m$ are not necessarily those naturally associated with $G / K$.
Example: $G=\operatorname{Spin}(2 r, 1)$ (double cover of $\mathrm{SO}(2 r, 1)$ ), $K=\operatorname{Spin}(2 r)$ $\tau_{1}^{ \pm}$the positive and negative spin representations, i.e. the irreducible representation of $K$ of heighest weight $(1 / 2, \ldots, 1 / 2, \pm 1 / 2)$.
The root system of $G / K$ is of type $A_{1}$, while the one giving the $\tau_{1}^{ \pm}$-spherical functions is of type $B C_{1}$.

## Examples

(1) Write $m(I)$ and $F_{\ell, \lambda}$ if $\tilde{\ell}=0$.

If $m=\left(m_{\mathrm{s}}, m_{\mathrm{m}}, m_{1}=1\right)$ is a geometric multiplicity corresponding to a Hermitian symmetric space $G / K$, then the

$$
F_{\ell, \lambda}=u^{-\ell} F_{\lambda}(m(\ell))
$$

are the restrictions to $A \equiv \mathfrak{a}$ of the spherical $\tau_{\ell}$-functions, where $\operatorname{dim} \tau_{\ell}=1$ (Shimeno, 1994).
(2) More generally, every $\tau$-spherical function for $G / K$ where $\tau$ is a small $K$-type and $G / K$ has restricted root system of type $B C$ is a $(\ell, \overparen{\ell})$-hypergeometric function for suitable choices of $(\Sigma, m,(\ell, \widetilde{\ell}))$ where $m=\left(m_{\mathrm{s}}, m_{\mathrm{m}}, m_{1}\right)$ is a positive mutliplicity on $\Sigma$.
$\rightsquigarrow$ case-by-case
$\rightsquigarrow \Sigma$ and $m$ are not necessarily those naturally associated with $G / K$.
Example: $G=\operatorname{Spin}(2 r, 1)$ (double cover of $\operatorname{SO}(2 r, 1)), K=\operatorname{Spin}(2 r)$
$\tau_{1}^{ \pm}$the positive and negative spin representations, i.e. the irreducible
representation of $K$ of heighest weight $(1 / 2, \ldots, 1 / 2, \pm 1 / 2)$.
The root system of $G / K$ is of type $A_{1}$, while the one giving the $\tau_{1}^{ \pm}$-spherical
functions is of type $B C_{1}$

## Examples

(1) Write $m(I)$ and $F_{\ell, \lambda}$ if $\tilde{\ell}=0$.

If $m=\left(m_{\mathrm{s}}, m_{\mathrm{m}}, m_{1}=1\right)$ is a geometric multiplicity corresponding to a Hermitian symmetric space $G / K$, then the

$$
F_{\ell, \lambda}=u^{-\ell} F_{\lambda}(m(\ell))
$$

are the restrictions to $A \equiv \mathfrak{a}$ of the spherical $\tau_{\ell}$-functions, where $\operatorname{dim} \tau_{\ell}=1$ (Shimeno, 1994).
(2) More generally, every $\tau$-spherical function for $G / K$ where $\tau$ is a small $K$-type and $G / K$ has restricted root system of type $B C$ is a $(\ell, \widetilde{\ell})$-hypergeometric function for suitable choices of $(\Sigma, m,(\ell, \widetilde{\ell}))$ where $m=\left(m_{\mathrm{s}}, m_{\mathrm{m}}, m_{\mathrm{l}}\right)$ is a positive mutliplicity on $\Sigma$.
$\leadsto$ case-by-case
$\rightsquigarrow \Sigma$ and $m$ are not necessarily those naturally associated with $G / K$.
Example: $G=\operatorname{Snin}(2 r, 1)$ (double cover of $\mathrm{SO}(2 r, 1)), K=\operatorname{Snin}(2 r)$ $\tau_{1}^{ \pm}$the positive and negative spin representations, i.e. the irreducible representation of $K$ of heighest weight $(1 / 2, \ldots, 1 / 2, \pm 1 / 2)$. The root system of $G / K$ is of type $A_{1}$, while the one giving the $\tau_{1}{ }^{+}$-spherical functions is of type $B C_{1}$

## Examples

(1) Write $m(I)$ and $F_{\ell, \lambda}$ if $\tilde{\ell}=0$.

If $m=\left(m_{\mathrm{s}}, m_{\mathrm{m}}, m_{\mathrm{l}}=1\right)$ is a geometric multiplicity corresponding to a Hermitian symmetric space $G / K$, then the

$$
F_{\ell, \lambda}=u^{-\ell} F_{\lambda}(m(\ell))
$$

are the restrictions to $A \equiv \mathfrak{a}$ of the spherical $\tau_{\ell}$-functions, where $\operatorname{dim} \tau_{\ell}=1$ (Shimeno, 1994).
(2) More generally, every $\tau$-spherical function for $G / K$ where $\tau$ is a small $K$-type and $G / K$ has restricted root system of type $B C$ is a $(\ell, \widetilde{\ell})$-hypergeometric function for suitable choices of $(\Sigma, m,(\ell, \widetilde{\ell}))$ where $m=\left(m_{\mathrm{s}}, m_{\mathrm{m}}, m_{\mathrm{l}}\right)$ is a positive mutliplicity on $\Sigma$.
$\rightsquigarrow$ case-by-case
$\rightsquigarrow \Sigma$ and $m$ are not necessarily those naturally associated with $G / K$.

> Example: G $\tau_{1}^{ \pm}$the positive and negative spin representations, i.e. the irreducible representation of $K$ of heighest weight $(1 / 2, \ldots, 1 / 2, \pm 1 / 2)$. The root system of $G / K$ is of type $A_{1}$, while the one giving the $\tau_{1}^{+}$-spherical functions is of type $B C_{1}$

## Examples

(1) Write $m(I)$ and $F_{\ell, \lambda}$ if $\tilde{\ell}=0$.

If $m=\left(m_{\mathrm{s}}, m_{\mathrm{m}}, m_{1}=1\right)$ is a geometric multiplicity corresponding to a Hermitian symmetric space $G / K$, then the

$$
F_{\ell, \lambda}=u^{-\ell} F_{\lambda}(m(\ell))
$$

are the restrictions to $A \equiv \mathfrak{a}$ of the spherical $\tau_{\ell}$-functions, where $\operatorname{dim} \tau_{\ell}=1$ (Shimeno, 1994).
(2) More generally, every $\tau$-spherical function for $G / K$ where $\tau$ is a small $K$-type and $G / K$ has restricted root system of type $B C$ is a $(\ell, \widetilde{\ell})$-hypergeometric function for suitable choices of $(\Sigma, m,(\ell, \widetilde{\ell}))$ where $m=\left(m_{\mathrm{s}}, m_{\mathrm{m}}, m_{\mathrm{l}}\right)$ is a positive mutliplicity on $\Sigma$.
$\rightsquigarrow$ case-by-case
$\rightsquigarrow \Sigma$ and $m$ are not necessarily those naturally associated with $G / K$.
Example: $G=\operatorname{Spin}(2 r, 1)$ (double cover of $\operatorname{SO}(2 r, 1)$ ), $K=\operatorname{Spin}(2 r)$ $\tau_{1}^{ \pm}$the positive and negative spin representations, i.e. the irreducible representation of $K$ of heighest weight $(1 / 2, \ldots, 1 / 2, \pm 1 / 2)$.
The root system of $G / K$ is of type $A_{1}$, while the one giving the $\tau_{1}^{ \pm}$-spherical functions is of type $B C_{1}$.

Is there an analog of Helgason-Johnson's theorem for the
$(\ell, \widetilde{\ell}$-hypergeometric functions (and hence for the $\tau$-spherical function)?

$$
F_{\ell, \tilde{\ell}, \lambda}(m)=u^{-\ell} v^{-\widetilde{\ell}} F_{\lambda}(m(\ell, \widetilde{\ell}))
$$

Needed:

- Some restrictions in the parameters $(\ell, \tilde{\ell})$.
$\rightsquigarrow$ symmetries in the various parameters
- Estimates for the $F_{\lambda}(m(n, \widetilde{n}))$ and for $F_{\ell, \bar{z}}(m)$
$m(\ell, \widetilde{\ell})=\left(m_{\mathrm{s}}+2 \ell, m_{\mathrm{m}}+2 \widetilde{\ell}, m_{\mathrm{l}}-2 \ell\right)$.
If $\ell \neq 0$ then the multiplicites are not positive
All estimates for Heckman-Opdam hypergeometric functions (outside the geometric cases) have been proved for nonnegative multiplicities.

Is there an analog of Helgason-Johnson's theorem for the
( $\ell, \widetilde{\ell}$ )-hypergeometric functions (and hence for the $\tau$-spherical function)?

$$
F_{\ell, \tilde{\ell}, \lambda}(m)=u^{-\ell} v^{-\tilde{\ell}} F_{\lambda}(m(\ell, \widetilde{\ell}))
$$

Needed:

- Some restrictions in the parameters $(\ell, \widetilde{\ell})$.
$\rightsquigarrow$ symmetries in the various parameters
- Estimates for the $F_{\lambda}\left(m(\ell, \widetilde{\ell})\right.$ ) and for $F_{\ell, \tilde{\ell}, \lambda}(m)$
$m(\ell, \widetilde{\ell})=\left(m_{\mathrm{s}}+2 \ell, m_{\mathrm{m}}+2 \widetilde{\ell}, m_{\mathrm{l}}-2 \ell\right)$.
If $\ell \neq 0$ then the multiplicites are not positive
All estimates for Heckman-Opdam hypergeometric functions (outside the geometric cases) have been proved for nonnegative multiplicities.

Is there an analog of Helgason-Johnson's theorem for the
$(\ell, \widetilde{\ell})$-hypergeometric functions (and hence for the $\tau$-spherical function)?

$$
F_{\ell, \tilde{\ell}, \lambda}(m)=u^{-\ell} v^{-\tilde{\ell}} F_{\lambda}(m(\ell, \tilde{\ell}))
$$

Needed:

- Some restrictions in the parameters $(\ell, \widetilde{\ell})$.
$\rightsquigarrow$ symmetries in the various parameters
- Estimates for the $F_{\lambda}(m(\ell, \widetilde{\ell}))$ and for $F_{\ell, \tilde{\ell}, \lambda}(m)$

$$
m(\ell, \tilde{\ell})=\left(m_{\mathrm{s}}+2 \ell, m_{\mathrm{m}}+2 \tilde{\ell}, m_{1}-2 \ell\right)
$$

If $\ell \neq 0$ then the multiplicites are not positive
All estimates for Heckman-Opdam hypergeometric functions (outside the geometric cases) have been proved for nonnegative multiplicities.

## Multiplicity functions

$\mathcal{M}=$ set of $\mathbb{R}$-valued multiplicity functions $m=\left(m_{s}, m_{\mathrm{m}}, m_{\mathrm{l}}\right)$ on $\Sigma$ of type $B C_{r}$.

$$
\begin{aligned}
& \mathcal{M}_{+}=\left\{m \in \mathcal{M}: m_{\alpha} \geq 0 \text { for every } \alpha \in \Sigma\right\} \quad \text { (non-negative multiplicities) } \\
& \mathcal{M}_{0}=\left\{m \in \mathcal{M}: m_{\mathrm{m}} \geq 0, m_{\mathrm{s}}+m_{\mathrm{l}} \geq 0\right\} \\
& \mathcal{M}_{1}=\left\{m \in \mathcal{M}: m_{\mathrm{m}}>0, m_{\mathrm{s}}>0, m_{\mathrm{s}}+2 m_{1}>0\right\} \quad \text { (standard multiplicities) } \\
& \mathcal{M}_{2}=\left\{m \in \mathcal{M}: m_{\mathrm{m}} \geq 0, m_{\mathrm{l}} \geq 0, m_{\mathrm{s}}+m_{1} \geq 0\right\} \\
& \mathcal{M}_{3}=\left\{m \in \mathcal{M}: m_{\mathrm{m}} \geq 0, m_{1} \leq 0, m_{\mathrm{s}}+2 m_{\mathrm{l}} \geq 0\right\}
\end{aligned}
$$



- $\mathcal{M}_{1}=\left(\mathcal{M}^{+} \cup \mathcal{M}_{3}\right)^{0}$
- $\mathcal{M}_{0}$ is the natural subset of $\mathcal{M}$ on which both $G_{\lambda}(m)$ and $F_{\lambda}(m)$ are def for all $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$.
- The asymptotics of $F_{\lambda}(m)$ determined by Narayanan-Pusti-P. (2014) for $m \in \mathcal{M}_{+}$hold also for $m \in \mathcal{M}_{1}$.
- The real version of Opdam's estimates established (in much stronger form) by Ho-Ólafsson (2014) for $m \in \mathcal{M}_{2}$ hold also for $m \in \mathcal{M}_{3}$.
- On $\mathcal{M}_{3}$ on a $m_{1} \leq 0$ but $\rho(m) \in \overline{\left(\mathfrak{a}^{*}\right)^{+}}$.


## Estimates of $F_{\lambda}(m, x)$ for $x \in \mathfrak{a}$

## Theorem

Let $m \in \overline{\mathcal{M}}_{1}=\mathcal{M}_{+} \cup \mathcal{M}_{3}$. Then the following properties hold on $\mathfrak{a}$ :
(a) For all $\lambda \in \mathfrak{a}^{*}$ the functions $F_{\lambda}(m)$ are real and strictly positive.
(b) $\left|F_{\lambda}(m)\right| \leq F_{\operatorname{Re} \lambda}(m)$.
(c) For all $\lambda \in \mathfrak{a}^{*}, \mu \in \overline{\left(\mathfrak{a}^{*}\right)^{+}}$and $x \in \mathfrak{a}$

$$
F_{\lambda+\mu}(m ; x) \leq F_{\mu}(m ; x) e^{\max _{w \in w}(w \lambda)(x)}
$$

Schapira, 2008: (a) and (b) for $\mathcal{M}_{+}$ Extended to $\mathcal{M}_{3}$ by modifying his arguments.

Koornwinder-Rösler-Voit, 2013: (c) for $\mathcal{M}_{+}$
Extended to $\mathcal{M}_{3}$ by modifying their arguments.

- Sharp asymptotics and Harish-Chandra estimates hold on $\mathcal{M}_{1}$
- Can apply these estimates/asymptotics to provided $m(\ell, \ell)$ is a standard multiplicity,


## Estimates of $F_{\lambda}(m, x)$ for $x \in \mathfrak{a}$

## Theorem

Let $m \in \overline{\mathcal{M}}_{1}=\mathcal{M}_{+} \cup \mathcal{M}_{3}$. Then the following properties hold on $\mathfrak{a}$ :
(a) For all $\lambda \in \mathfrak{a}^{*}$ the functions $F_{\lambda}(m)$ are real and strictly positive.
(b) $\left|F_{\lambda}(m)\right| \leq F_{\operatorname{Re} \lambda}(m)$.
(c) For all $\lambda \in \mathfrak{a}^{*}, \mu \in \overline{\left(\mathfrak{a}^{*}\right)^{+}}$and $x \in \mathfrak{a}$

$$
F_{\lambda+\mu}(m ; x) \leq F_{\mu}(m ; x) e^{\max _{w \in w}(w \lambda)(x)}
$$

Schapira, 2008: (a) and (b) for $\mathcal{M}_{+}$ Extended to $\mathcal{M}_{3}$ by modifying his arguments.

Koornwinder-Rösler-Voit, 2013: (c) for $\mathcal{M}_{+}$
Extended to $\mathcal{M}_{3}$ by modifying their arguments.

- Sharp asymptotics and Harish-Chandra estimates hold on $\mathcal{M}_{1}$.
- Can apply these estimates/asymptotics to provided $m(\ell, \widetilde{\ell})$ is a standard multiplicity,


## Estimates of $F_{\lambda}(m, x)$ for $x \in \mathfrak{a}$

## Theorem

Let $m \in \overline{\mathcal{M}}_{1}=\mathcal{M}_{+} \cup \mathcal{M}_{3}$. Then the following properties hold on $\mathfrak{a}$ :
(a) For all $\lambda \in \mathfrak{a}^{*}$ the functions $F_{\lambda}(m)$ are real and strictly positive.
(b) $\left|F_{\lambda}(m)\right| \leq F_{\operatorname{Re} \lambda}(m)$.
(c) For all $\lambda \in \mathfrak{a}^{*}, \mu \in \overline{\left(\mathfrak{a}^{*}\right)^{+}}$and $x \in \mathfrak{a}$

$$
F_{\lambda+\mu}(m ; x) \leq F_{\mu}(m ; x) e^{\max _{w \in W}(w \lambda)(x)} .
$$

Schapira, 2008: (a) and (b) for $\mathcal{M}_{+}$ Extended to $\mathcal{M}_{3}$ by modifying his arguments.

Koornwinder-Rösler-Voit, 2013: (c) for $\mathcal{M}_{+}$
Extended to $\mathcal{M}_{3}$ by modifying their arguments.

- Sharp asymptotics and Harish-Chandra estimates hold on $\mathcal{M}_{1}$.
- Can apply these estimates/asymptotics to $F_{\ell, \tilde{\ell}, \lambda}(m)=u^{-\ell} v^{-\widetilde{\ell}} F_{\lambda}(m(\ell, \widetilde{\ell}))$ provided $m(\ell, \widetilde{\ell})$ is a standard multiplicity,

$$
\text { i.e. if } \ell \in] \ell_{\min }=-\frac{m_{\mathrm{s}}}{2}, \ell_{\max }=\frac{m_{\mathrm{s}}}{2}+m_{1}\left[\text { and } \tilde{\ell} \geq-\frac{m_{\mathrm{m}}}{2} .\right.
$$

## Symmetries of $F_{\ell, \tilde{\ell}, \lambda}$ in the parameter $\ell$

## Lemma

For every $m, \ell$ and $\lambda: \quad F_{\ell, \tilde{\ell}, \lambda}(m)=F_{-\ell+m_{1}-1, \tilde{\ell}, \lambda}(m)$
Geometric case: $m_{1}=1$, even in $\ell$.
(we omit $\widetilde{\ell}$ from notation)
$\rightsquigarrow$ The estimates/asymptotics extend to $\ell \in] \ell_{\text {min }}-1, \ell_{\max }[$ (closed intervals for estimates)



## Bounded ( $\ell, \widetilde{\ell}$ )-hypergeometric functions

Let $m=\left(m_{\mathrm{s}}, m_{\mathrm{m}}, m_{\mathrm{l}}\right)$ be a nonnegative multiplicity.

$$
\rho(m(\ell, \tilde{\ell}))=\frac{1}{2} \sum_{\alpha \in \Sigma^{+}} m_{\alpha}(\ell, \tilde{\ell}) \alpha=\rho(m)-\frac{\ell}{2} \sum_{j=1}^{r} \beta_{j}+\frac{\tilde{\ell}}{2} \sum_{1 \leq i<j \leq r}\left(\beta_{j} \pm \beta_{i}\right)
$$

In particular,

$$
\rho(m(0,2 \widetilde{\ell}))=\rho(m)+\widetilde{\ell} \sum_{1 \leq i<j \leq r}\left(\beta_{j} \pm \beta_{i}\right)
$$

Since $\sum_{1 \leq i<j \leq r}\left(\beta_{j} \pm \beta_{i}\right)=\sum_{j=1}^{r} 2(j-1) \beta_{j}$ is a sum of positive roots, then $\rho(m(0,2 \widetilde{\ell}))>\rho(m)$ if $\widetilde{\ell}>0$.
$C(\rho(m(0,2 \ell)))=$ the convex hull of the set $\{w \rho(m(0,2 \ell))$ $w \in W\}$

## Bounded ( $\ell, \widetilde{\ell}$ )-hypergeometric functions

Let $m=\left(m_{\mathrm{s}}, m_{\mathrm{m}}, m_{\mathrm{l}}\right)$ be a nonnegative multiplicity.

$$
\rho(m(\ell, \tilde{\ell}))=\frac{1}{2} \sum_{\alpha \in \Sigma^{+}} m_{\alpha}(\ell, \tilde{\ell}) \alpha=\rho(m)-\frac{\ell}{2} \sum_{j=1}^{r} \beta_{j}+\frac{\tilde{\ell}}{2} \sum_{1 \leq i<j \leq r}\left(\beta_{j} \pm \beta_{i}\right)
$$

In particular,

$$
\rho(m(0,2 \widetilde{\ell}))=\rho(m)+\widetilde{\ell} \sum_{1 \leq i<j \leq r}\left(\beta_{j} \pm \beta_{i}\right)
$$

Since $\sum_{1 \leq i<j \leq r}\left(\beta_{j} \pm \beta_{i}\right)=\sum_{j=1}^{r} 2(j-1) \beta_{j}$ is a sum of positive roots, then $\rho(m(0,2 \widetilde{\ell}))>\rho(m)$ if $\widetilde{\ell}>0$.
$C(\rho(m(0,2 \widetilde{\ell})))=$ the convex hull of the set $\{w \rho(m(0,2 \widetilde{\ell})): w \in W\}$.

## Theorem

Assume that $m_{1} \geq 1$ and $\left.\tilde{\ell} \geq 0, \ell \in\right] \ell_{\min }-1, \ell_{\max }$. Then, $F_{\ell, \tilde{\ell}, \lambda}(m)$ is bounded if and only if $\lambda \in C(\rho(m(0,2 \widetilde{\ell})))+i a^{*}$.

## Schetch of the proof that $F_{\ell, \tilde{\ell}, \lambda}(m)$ is bounded on $C(\rho(m(0,2 \widetilde{\ell})))$

$F_{\ell, \tilde{\ell}, \lambda}(m)=u^{-\ell} v^{-\widetilde{\ell}} F_{\lambda}(m(\ell, \widetilde{\ell}))$
Since

$$
\rho(m(\ell, \widetilde{\ell}))=\rho(m)-\frac{\ell}{2} \sum_{j=1}^{r} \beta_{j}+\frac{\tilde{\ell}}{2} \sum_{1 \leq i<j \leq r}\left(\beta_{j} \pm \beta_{i}\right)
$$

## we have

$$
\rho(m(\ell, \widetilde{\ell}))+\frac{\ell}{2} \sum_{j=1}^{r} \beta_{j}+\frac{\widetilde{\ell}}{2} \sum_{1 \leq i<j \leq r}\left(\beta_{j} \pm \beta_{i}\right)=\rho(m(0,2 \widetilde{\ell}))
$$

$\left|F_{\ell, \tilde{\ell}, \lambda}(m ; x)\right| \leq F_{\ell, \tilde{\ell}, \mathrm{Re} \lambda}(m ; x)=u^{-\ell}(x) v^{-\widetilde{\ell}}(x) F_{\operatorname{Re} \lambda}(m(\ell, \widetilde{\ell}) ; x)$
By the maximum modulus principle, the maximum of $\mid F_{\rho \tilde{\rho},}(m ; x)$ is then attained at $\{w \rho(m(0,2 \widetilde{\ell})): w \in W\}$

$$
\left|F_{\ell, \lambda}(m ; x)\right| \leq u^{-\ell}(x) v^{-\tilde{\ell}}(x) F_{\rho(m(2 \tilde{\ell}))}(m(\ell, \widetilde{\ell}) ; x) .
$$

$\rho(m(\ell, \widetilde{\ell})) \in \overline{\left(\mathfrak{a}^{*}\right)^{+}}$. Can apply $F_{\lambda+\mu}(x) \leq F_{\mu}(x) e^{\max _{w \in W}(w \lambda)(x)}$ and $F_{\rho(m(\ell, \widetilde{\ell}))}(m(\ell, \widetilde{\ell}) ; x)=1$.

Schetch of the proof that $F_{\ell, \widetilde{\ell}, \lambda}(m)$ is bounded on $C(\rho(m(0,2 \widetilde{\ell})))$

$$
F_{\ell, \widetilde{\ell}, \lambda}(m)=u^{-\ell} v^{-\widetilde{\ell}} F_{\lambda}(m(\ell, \widetilde{\ell}))
$$

## Since

$$
\rho(m(\ell, \widetilde{\ell}))=\rho(m)-\frac{\ell}{2} \sum_{j=1}^{r} \beta_{j}+\frac{\tilde{\ell}}{2} \sum_{1 \leq i<j \leq r}\left(\beta_{j} \pm \beta_{i}\right)
$$

we have

$$
\rho(m(\ell, \widetilde{\ell}))+\frac{\ell}{2} \sum_{j=1}^{r} \beta_{j}+\frac{\tilde{\ell}}{2} \sum_{1 \leq i<j \leq r}\left(\beta_{j} \pm \beta_{i}\right)=\rho(m(0,2 \widetilde{\ell}))
$$

$\left|F_{\ell, \tilde{\bar{e}}, \lambda}(m ; x)\right| \leq F_{\ell, \overline{\widetilde{l}, \mathrm{Re} \lambda}}(m ; x)=u^{-\ell}(x) v^{-\bar{\ell}}(x) F_{\operatorname{Re} \lambda}(m(\ell, \widetilde{\ell}) ; x)$
By the maximum modulus principle, the maximum of $\left|F_{\ell, \tilde{\ell}, \lambda}(m ; x)\right|$ is then attained at $\{w \rho(m(0,2 \widetilde{\ell})): w \in W\}$. Thus

$$
\left|F_{\ell, \lambda}(m ; x)\right| \leq u^{-\ell}(x) v^{-\tilde{\ell}}(x) F_{\rho(m(2 \tilde{\ell}))}(m(\ell, \tilde{\ell}) ; x) .
$$

$\rho(m(\ell, \widetilde{\ell})) \in \overline{\left(\mathfrak{a}^{*}\right)^{+}}$. Can apply $F_{\lambda+\mu}(x) \leq F_{\mu}(x) e^{\max _{w \in W}(w \lambda)(x)}$ and

## Schetch of the proof that $F_{\ell, \tilde{\ell}, \lambda}(m)$ is bounded on $C(\rho(m(0,2 \widetilde{\ell})))$

$F_{\ell, \tilde{\ell}, \lambda}(m)=u^{-\ell} v^{-\widetilde{\ell}} F_{\lambda}(m(\ell, \tilde{\ell}))$
Since

$$
\rho(m(\ell, \widetilde{\ell}))=\rho(m)-\frac{\ell}{2} \sum_{j=1}^{r} \beta_{j}+\frac{\tilde{\ell}}{2} \sum_{1 \leq i<j \leq r}\left(\beta_{j} \pm \beta_{i}\right)
$$

we have

$$
\rho(m(\ell, \widetilde{\ell}))+\frac{\ell}{2} \sum_{j=1}^{r} \beta_{j}+\frac{\tilde{\ell}}{2} \sum_{1 \leq i<j \leq r}\left(\beta_{j} \pm \beta_{i}\right)=\rho(m(0,2 \widetilde{\ell}))
$$

$\left|F_{\ell, \tilde{\ell}, \lambda}(m ; x)\right| \leq F_{\ell, \tilde{\ell}, \operatorname{Re} \lambda}(m ; x)=u^{-\ell}(x) v^{-\widetilde{\ell}}(x) F_{\operatorname{Re} \lambda}(m(\ell, \widetilde{\ell}) ; x)$
By the maximum modulus principle, the maximum of $\left|F_{\ell, \tilde{\ell}, \lambda}(m ; x)\right|$ is then attained at $\{w \rho(m(0,2 \widetilde{\ell})): w \in W\}$.

## Schetch of the proof that $F_{\ell, \tilde{\ell}, \lambda}(m)$ is bounded on $C(\rho(m(0,2 \widetilde{\ell})))$

$F_{\ell, \tilde{\ell}, \lambda}(m)=u^{-\ell} v^{-\widetilde{\ell}} F_{\lambda}(m(\ell, \tilde{\ell}))$
Since

$$
\rho(m(\ell, \widetilde{\ell}))=\rho(m)-\frac{\ell}{2} \sum_{j=1}^{r} \beta_{j}+\frac{\tilde{\ell}}{2} \sum_{1 \leq i<j \leq r}\left(\beta_{j} \pm \beta_{i}\right)
$$

we have

$$
\rho(m(\ell, \widetilde{\ell}))+\frac{\ell}{2} \sum_{j=1}^{r} \beta_{j}+\frac{\tilde{\ell}}{2} \sum_{1 \leq i<j \leq r}\left(\beta_{j} \pm \beta_{i}\right)=\rho(m(0,2 \widetilde{\ell}))
$$

$\left|F_{\ell, \widetilde{\mathscr{U}}, \lambda}(m ; x)\right| \leq F_{\ell, \tilde{\ell}, \operatorname{Re} \lambda}(m ; x)=u^{-\ell}(x) v^{-\widetilde{\ell}}(x) F_{\operatorname{Re} \lambda}(m(\ell, \widetilde{\ell}) ; x)$
By the maximum modulus principle, the maximum of $\left|F_{\ell, \tilde{\ell}, \lambda}(m ; x)\right|$ is then attained at $\{w \rho(m(0,2 \widetilde{\ell})): w \in W\}$.
Thus

$$
\left|F_{\ell, \lambda}(m ; x)\right| \leq u^{-\ell}(x) v^{-\tilde{\ell}}(x) F_{\rho(m(2 \tilde{\ell}))}(m(\ell, \tilde{\ell}) ; x) .
$$

## Schetch of the proof that $F_{\ell, \tilde{,}, \lambda}(m)$ is bounded on $C(\rho(m(0,2 \widetilde{\ell})))$

$F_{\ell, \tilde{\ell}, \lambda}(m)=u^{-\ell} v^{-\tilde{\ell}} F_{\lambda}(m(\ell, \tilde{\ell}))$
Since

$$
\rho(m(\ell, \tilde{\ell}))=\rho(m)-\frac{\ell}{2} \sum_{j=1}^{r} \beta_{j}+\frac{\tilde{\ell}}{2} \sum_{1 \leq i<j \leq r}\left(\beta_{j} \pm \beta_{i}\right)
$$

we have

$$
\rho(m(\ell, \widetilde{\ell}))+\frac{\ell}{2} \sum_{j=1}^{r} \beta_{j}+\frac{\tilde{\ell}}{2} \sum_{1 \leq i<j \leq r}\left(\beta_{j} \pm \beta_{i}\right)=\rho(m(0,2 \widetilde{\ell}))
$$

$\left|F_{\ell, \widetilde{\mathscr{U}}, \lambda}(m ; x)\right| \leq F_{\ell, \tilde{\ell}, \operatorname{Re} \lambda}(m ; x)=u^{-\ell}(x) v^{-\widetilde{\ell}}(x) F_{\operatorname{Re} \lambda}(m(\ell, \widetilde{\ell}) ; x)$
By the maximum modulus principle, the maximum of $\left|F_{\ell, \tilde{\ell}, \lambda}(m ; x)\right|$ is then attained at $\{w \rho(m(0,2 \widetilde{\ell})): w \in W\}$.
Thus

$$
\left|F_{\ell, \lambda}(m ; x)\right| \leq u^{-\ell}(x) v^{-\tilde{\ell}}(x) F_{\rho(m(2 \tilde{\ell}))}(m(\ell, \tilde{\ell}) ; x) .
$$

$\rho(m(\ell, \widetilde{\ell})) \in \overline{\left(\mathfrak{a}^{*}\right)^{+}}$. Can apply $F_{\lambda+\mu}(x) \leq F_{\mu}(x) e^{\max _{w \in W}(w \lambda)(x)}$ and $F_{\rho(m(\ell, \widetilde{)}))}(m(\ell, \widetilde{\ell}) ; x)=1$.

## Thank you!

