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Helgason-Johnson’s theorem: the bounded spherical functions

G/K = Riemannian symmetric space of the noncompact type

G = connected noncompact semisimple Lie group with finite center, e.g. SL>(RR)
K = maximal compact subgroup of G, e.g. SOz(R)
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K = maximal compact subgroup of G, e.g. SOz(R)

Spherical functions = (normalized) K-invariant joint eigenfunctions of the commutative
algebra D(G/K) of G-invariant differential operators on G/K

~» matrix coefficients (for the K-fixed vector) of spherical principal series reprs
~+ building blocks of the K-invariant harmonic analysis on G/K
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Helgason-Johnson’s theorem: the bounded spherical functions

G/K = Riemannian symmetric space of the noncompact type

G = connected noncompact semisimple Lie group with finite center, e.g. SL>(RR)
K = maximal compact subgroup of G, e.g. SOz(R)

Spherical functions = (normalized) K-invariant joint eigenfunctions of the commutative

algebra D(G/K) of G-invariant differential operators on G/K
~» matrix coefficients (for the K-fixed vector) of spherical principal series reprs
~- building blocks of the K-invariant harmonic analysis on G/K
=t®p Cartan decomposition of the Lia algebra of G

a C p maximal abelian subspace (Cartan subspace)

Y = (restricted) roots of (g, a)

W = Weyl group of &

~ spherical functions are parametrized by a¢ (modulo W)
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Helgason-Johnson’s theorem: the bounded spherical functions

G/K = Riemannian symmetric space of the noncompact type

G = connected noncompact semisimple Lie group with finite center, e.g. SL>(RR)

K = maximal compact subgroup of G, e.g. SOz(R)

Spherical functions = (normalized) K-invariant joint eigenfunctions of the commutative

algebra D(G/K) of G-invariant differential operators on G/K

~» matrix coefficients (for the K-fixed vector) of spherical principal series reprs
~- building blocks of the K-invariant harmonic analysis on G/K
=t®p Cartan decomposition of the Lia algebra of G

a C p maximal abelian subspace (Cartan subspace)

Y = (restricted) roots of (g, a)

W = Weyl group of &
~ spherical functions are parametrized by a¢ (modulo W)

¥t = choice of positive roots in &

m,, = multiplicity of the root « € &

p= 1/2 Za62+ Mo

Harish-Chandra’s integral formula: oa(9) = [, XN gk ge G,

where H(x) € ais the Iwasawa component of x € G = KAN

Then: pux = px forall A e agand w € W.
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Question:
For which parameters X € a¢ the spherical function

or(g) = / SA—P)(H(ER) g
is bounded? K
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Question:
For which parameters X € a¢ the spherical function

or(g) = / SA—P)(H(ER) g
is bounded? K
C(p) = convex hull in a* of {wp : w € W}

Theorem (Helgason & Johnson, 1969)

The spherical function ¢ (with X € af) is bounded if and only if X € C(p) + ia*. In this
case, |px(g)| <1 forallg € G.

A. Pasquale (IECL, Metz) Bounded hypergeometric functions SL2R, May 12-13, 2022 3/21



Question:
For which parameters X € a¢ the spherical function

or(g) = / SA—P)(H(ER) g
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C(p) = convex hull in a* of {wp : w € W}

Theorem (Helgason & Johnson, 1969)

The spherical function ¢ (with X € af) is bounded if and only if X € C(p) + ia*. In this
case, |px(g)| <1 forallg € G.

Applications:
L'(G//K) = {f: G— C: L"and K-biinvariant: f(kigkz) = f(9), "9 € G, "ki, ko € K}

A. Pasquale (IECL, Metz) Bounded hypergeometric functions SL2R, May 12-13, 2022 3/21



Question:
For which parameters X € a¢ the spherical function

or(g) = / SA—P)(H(ER) g
is bounded? K
C(p) = convex hull'in a* of {wp: w € W}

Theorem (Helgason & Johnson, 1969)

The spherical function ¢ (with X € af) is bounded if and only if X € C(p) + ia*. In this
case, |px(g)| <1 forallg € G.

Applications:
L'(G//K) = {f: G— C: L' and K-biinvariant: f(kigkz) = f(9), °g € G, ki, k2 € K}
e L'(G//K) is a commutative Banach algebra with respect to convolution.
The continuous characters of L'(G//K) are the maps
feL'(@//K)— [ fahor(a) do
where ¢, is a bounded spherical function, i.g. the bdd spherical functions
parametrize the maximal ideal space of L'(G//K)
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is bounded? K
C(p) = convex hull'in a* of {wp: w € W}

Theorem (Helgason & Johnson, 1969)

The spherical function ¢ (with X € af) is bounded if and only if X € C(p) + ia*. In this
case, |px(g)| <1 forallg € G.

Applications:
L'(G//K) = {f: G— C: L' and K-biinvariant: f(kigkz) = f(9), °g € G, ki, k2 € K}
e L'(G//K) is a commutative Banach algebra with respect to convolution.
The continuous characters of L'(G//K) are the maps

reL'(G//K) — [ Ha)e(@) do
where ¢, is a bounded spherical function, i.e. the bdd spherical functions
parametrize the maximal ideal space of L'(G//K)
@ Spherical Fourier transform of f € L'(G//K):

(FH(N) = /G f(@)er(g) dg.  Acal

®x is an entire function of A € a¢.
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Question:
For which parameters X € a¢ the spherical function

or(g) = / SA—P)(H(ER) g
is bounded? K
C(p) = convex hull'in a* of {wp: w € W}

Theorem (Helgason & Johnson, 1969)

The spherical function ¢ (with X € af) is bounded if and only if X € C(p) + ia*. In this
case, |px(g)| <1 forallg € G.

Applications:
L'(G//K) = {f: G— C: L' and K-biinvariant: f(kigkz) = f(9), °g € G, ki, k2 € K}
e L'(G//K) is a commutative Banach algebra with respect to convolution.
The continuous characters of L'(G//K) are the maps

reL'(G//K) — [ Ha)e(@) do
where ¢, is a bounded spherical function, i.e. the bdd spherical functions
parametrize the maximal ideal space of L'(G//K)
@ Spherical Fourier transform of f € L'(G//K):

(FH(N) = /G f(@)er(g) dg.  Acal

®x is an entire function of A € ag. If 3U open in a¢ such that ¢ is bounded for
A € U, then Ff(\) is holomorphic in U.
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Heckman-Opdam’s hypergeometric functions

e The symmetric space G/K is replaced by a triple (a, X, m) where:
a = finite dim. Euclidean R-vector space, inner product (-, -)
> = root system in a*, with Weyl group W
m = real multiplicity function on X
i.,e. m: X — R, W-invariant: myo = my forallae X, we W
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e The symmetric space G/K is replaced by a triple (a, X, m) where:
a = finite dim. Euclidean R-vector space, inner product (-, -)
> = root system in a*, with Weyl group W
m = real multiplicity function on X
i.,e. m: X — R, W-invariant: myo = my forallae X, we W

(a, X, m) is geometric if from a Riemannian symm space of the noncompact type
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Heckman-Opdam’s hypergeometric functions

e The symmetric space G/K is replaced by a triple (a, X, m) where:
a = finite dim. Euclidean R-vector space, inner product (-, -)
> = root system in a*, with Weyl group W
m = real multiplicity function on X
i.,e. m: X — R, W-invariant: myo = my forallae X, we W

(a, X, m) is geometric if from a Riemannian symm space of the noncompact type
o Commutative family D of differential operators associated with (a, X, m):

For x € a the Cherednik operator T is the difference-reflection operator on a (or ac)
defined for f € C*°(a) and H € a by

f(raH
Tuf(H) = oxf(H) + maa(x) (H) — = ,Lfa ) _ p(m)(x)f(H)
aexrt
where: r, = reflection across ker o,
p(m) = 3 Lacrs Mac
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Heckman-Opdam’s hypergeometric functions

e The symmetric space G/K is replaced by a triple (a, X, m) where:
a = finite dim. Euclidean R-vector space, inner product (-, -)
> = root system in a*, with Weyl group W
m = real multiplicity function on X
i.,e. m: X — R, W-invariant: myo = my forallae X, we W

(a, X, m) is geometric if from a Riemannian symm space of the noncompact type
o Commutative family D of differential operators associated with (a, X, m):

For x € a the Cherednik operator T is the difference-reflection operator on a (or ac)
defined for f € C*°(a) and H € a by

Tuf(H) = oxf(H) + maa(x) (H) —
aexrt
where: r, = reflection across ker o,
p(m) = %Zae)?r Mo

{x € a — Ty} commutative = extends as algebra homom {p € S(ac) — T,}

f(ra H)
— e 2a(H

p(m)(x)f(H)
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Heckman-Opdam’s hypergeometric functions

e The symmetric space G/K is replaced by a triple (a, >, m) where:

a = finite dim. Euclidean R-vector space, inner product (-, -)

> = root system in a*, with Weyl group W

m = real multiplicity function on X

i.,e. m: X — R, W-invariant: myo = my forallae X, we W

(a, X, m) is geometric if from a Riemannian symm space of the noncompact type
e Commutative family D of differential operators associated with (a, X, m):
For x € a the Cherednik operator T is the difference-reflection operator on a (or ac)
defined for f € C*°(a) and H € a by

Tf(H) = oxf(H) + 3 maa(x) (H) — f(raH)—p(m)(X)f(H)

2a(H
aext -
where: r, = reflection across ker a,
p(m) = %Zae)?r Mo
{x € a — Ty} commutative = extends as algebra homom {p € S(ac) — T,}
e lfpe S(ac)”, then D, := Tol oo (yw i a diff operator on a (or ac).
D(a, %, m) := {Dp : p € S(ac)"}
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Heckman-Opdam’s hypergeometric functions

e The symmetric space G/K is replaced by a triple (a, >, m) where:
a = finite dim. Euclidean R-vector space, inner product (-, -)
> = root system in a*, with Weyl group W
m = real multiplicity function on X
ie. m: X — R, W-invariant: myo = mq forallae X, we W

(a, X, m) is geometric if from a Riemannian symm space of the noncompact type

e Commutative family D of differential operators associated with (a, X, m):
For x € a the Cherednik operator T is the difference-reflection operator on a (or ac)
defined for f € C*°(a) and H € a by

Tf(H) = oxf(H) + 3 maa(x) (H) — f(raH)—p(m)(X)f(H)

2a(H
aexrt -¢€
where: r, = reflection across ker o,
1
p(m) = 3 Lacrs Mac

{x € a — Ty} commutative = extends as algebra homom {p € S(ac) — T,}
e lfpe S(ac)”, then D, := Tol oo (yw i a diff operator on a (or ac).

D(a, %, m) := {Dp : p € S(ac)"}
Example: D(a, X, m) = D(G/K)|q if (a, X, m) is geometric.
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e Hypergeomelric function of spectral parameter A € ag:
unique W-invariant analytic function F, on a which satisfies the system of diff egs

DoFy =p(M\)F,  pe Sac)”,
Fx(0) =1
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e Hypergeomelric function of spectral parameter A € ag:
unique W-invariant analytic function F, on a which satisfies the system of diff egs

DoFy =p(A)Fr,  pe S(ac)”,
FA(0) =1
Then: Fyy = Fy forallw e W.
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e Hypergeomelric function of spectral parameter A € ag:

unique W-invariant analytic function F, on a which satisfies the system of diff egs
DoFy =p(A)Fr,  pe S(ac)”,
F(0) =1

Then: Fux = Fxforallw e W.

Examples:
(1) (a,X, m) geometric: a=expa-0C G/K
Fx = ¢ Harish-Chandra’s spherical function of spectral parameter A € ag
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e Hypergeometric function of spectral parameter A € ag:
unique W-invariant analytic function F, on a which satisfies the system of diff egs

DpFA = p(A)FX7 p S S(uC)Wa
F(0) =1
Then: Fyy = Fy forallw e W.

Examples:
(1) (a,X, m) geometric: a=expa-0C G/K

Fx = ¢ Harish-Chandra’s spherical function of spectral parameter A € a¢
(2) rank-one (i.e. dimg a = 1): Jacobi function of 2nd kind

Fa(x) = ,F, (ma/2+2m2a+>\7 ma/2+2m2.17>\; ma/2+2m2a+1 . sinh? X)
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e Hypergeometric function of spectral parameter A € ag:
unique W-invariant analytic function F, on a which satisfies the system of diff egs

DpFx = p(M\)Fx, p € S(ac)”,
F(0) =1

Then: Fyy = Fy forallw e W.

Examples:

(1) (a,X, m) geometric: a=expa-0C G/K

Fx = ¢ Harish-Chandra’s spherical function of spectral parameter A € a¢
(2) rank-one (i.e. dimg a = 1): Jacobi function of 2nd kind

Mo /24 Mo +X Mo /24+May —A | Mg /24Mp +1 | [)
F)\(X):zf:‘( (2o tA Mo /2t X, Ma/2iMm, ,—smhx)

e Nonsymmetric hypergeometric function of spectral param A € ag (Opdam, 1995):
unigue analytic function G, on a which satisfies the system of diff-difference equations

TXGAI)\(X)GA, Xeca,
G,(0) =1
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e Hypergeometric function of spectral parameter A € ag:
unique W-invariant analytic function F, on a which satisfies the system of diff egs

DpFx = p(M\)Fx, p € S(ac)”,
F(0) =1

Then: Fyy = Fy forallw e W.

Examples:

(1) (a,X, m) geometric: a=expa-0C G/K

Fx = ¢ Harish-Chandra’s spherical function of spectral parameter A € a¢
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e Nonsymmetric hypergeometric function of spectral param A € ag (Opdam, 1995):
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e Hypergeometric function of spectral parameter A € ag:
unique W-invariant analytic function F, on a which satisfies the system of diff egs

DpFx = p(M\)Fx, p € S(ac)”,
F(0) =1

Then: Fyy = Fy forallw e W.

Examples:

(1) (a,X, m) geometric: a=expa-0C G/K

Fx = ¢ Harish-Chandra’s spherical function of spectral parameter A € a¢
(2) rank-one (i.e. dimg a = 1): Jacobi function of 2nd kind

Ma [24Moo+X Mo /24Moy — X Mo /24+mo+1 . P k2
F)\(X):zf:‘( (2o tA Mo /2t X, Ma/2iMm, ,—smhx)

e Nonsymmetric hypergeometric function of spectral param A € ag (Opdam, 1995):
unigue analytic function G, on a which satisfies the system of diff-difference equations

TXGAI)\(X)GA, Xeca,
G,(0) =1
o Relation: FA(x) = gy S pew Ga(wx).

e No integral formulas for F\ and G.

A. Pasquale (IECL, Metz) Bounded hypergeometric functions SL2R, May 12-13, 2022 5/21



Estimates for m, > 0 forall o € ©

e Basic estimate (Schapira, 2008):
(1) F. real and positive if A € a*
(2) |Fr| < Freaforall X € at
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Estimates for m, > 0 forall o € ©

e Basic estimate (Schapira, 2008):
(1) F. real and positive if A € a*
(2) |Fr| < Freaforall X € at

Notation:
forf,g: D — (0, +o0), write f < gif 3 C; > 0, C; > 0so that Cig(x) < f(x) < Cog(x) forall x € D.
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Estimates for m, > Oforalla € ©

e Basic estimate (Schapira, 2008):
(1) F. real and positive if A € a*
(2) |Fr| < Freaforall X € at

Notation:
forf,g: D — (0, +o0), write f < gif 3 C; > 0, C; > 0so that Cig(x) < f(x) < Cog(x) forall x € D.

Sharp Harish-Chandra estimates:

Theorem (Anker (1987, A\ = 0), Schapira (2008), Narayanan-P.-Pusti (2014))
Let X € (a*)*. Then for all x € a*

Fa(m;x) < [ [T (1 +a(x)] =™,

aex?
where Y9 = {a € X : /2 ¢ T, (o, A) = O}
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Estimates for m, > 0 foralla € ©

e Basic estimate (Schapira, 2008):
(1) F. real and positive if A € a*
(2) |Fr| < Freaforall X € at

Notation:
forf,g: D — (0, +o0), write f < gif 3 C; > 0, C; > 0so that Cig(x) < f(x) < Cog(x) forall x € D.

Sharp Harish-Chandra estimates:
Theorem (Anker (1987, A\ = 0), Schapira (2008), Narayanan-P.-Pusti (2014))
Let \ € (a*)*. Then for all x € a*

Fa(m;x) < [ [T (1 +a(x)] =™,

0
€Xy

where Zg = {a eyt a/2 ¢ 3, (a,)\) = 0}.

Analogue of Helgason-Johnson theorem:
C(p(m)) = convex hull in a* of {wp(m) : w € W}
Theorem (Narayanan-P.-Pusti (2014))

Fx(m) is bounded if and only if \ € C(p(m)) + ia™. In this case, |Fx(x)| < 1 for all
X € a.
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Generalizations

Spherical functions on a
Riem. symmetric space G/K
of the noncompact type

(Harish-Chandra, Helgason,...)
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Generalizations

Heckman-Opdam’s Spherical functions on a
hypergeometric functions Riem. symmetric space G/K

(Koornwinder, Heckman & Opdam, of the noncompaCt type

Cherednik,...) (Harish-Chandra, Helgason,...)
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Generalizations

Heckman-Opdam’s
hypergeometric functions
(Koornwinder, Heckman & Opdam,
Cherednik,...)

Spherical functions on a
Riem. symmetric space G/K
of the noncompact type

(Harish-Chandra, Helgason,...)

A. Pasquale (IECL, Metz)

N =1

7-spherical functions on the
homog. vector bundle over
G/K associated with 7

(7= irr. unitary rep of K)

(Godement, Harish-Chandra,...)
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Generalizations

Heckman-Opdam’s Spherical functions on a
hypergeometric functions 5 Riem. symmetric space G/K
(Koornwinder, Heckman & Opdam, of the noncompact type
Cherednik,...) (Harish-Chandra, Helgason,...)
N =1 N =1

7-spherical functions on the
homog. vector bundle over
) D) G/K associated with 7

(7= irr. unitary rep of K)

(Godement, Harish-Chandra,...)

Two questions:

o Restricted to A, can r-spherical functions for arbitrary = be expressed in terms of
Heckman-Opdam hyergeometric functions?

o Can one prove an analog of Helgason-Johnson’s theorem for the 7-spherical
functions (and their generalizations)?

A. Pasquale (IECL, Metz) Bounded hypergeometric functions SL2R, May 12-13, 2022 7/21



T-spherical functions on G

(, V)= finite dim irreducible representation of K
f: G — End(V,) is T-radial if f(kigkz) = 7(ky )f(9)T(k; "), Vg € G, Yki, ke € K
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T-spherical functions on G

(, V)= finite dim irreducible representation of K
f: G — End(V,) is T-radial if f(kigkz) = 7(ky )f(9)T(k; "), Vg € G, Yki, ke € K

L'(G//K;7)={f: G— End(V,): L' and r-radial}, convolution algebra
Ex.. L'"(G//K)ifr =1.

(G, K, ) is a Gelfand triple if L' (G//K; ) is commutative.
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T-spherical functions on G

(, V)= finite dim irreducible representation of K

f: G — End(V,) is T-radial if f(kigkz) = 7(ky )f(9)T(k; "), Vg € G, Yki, ke € K
L'(G//K;7)={f: G— End(V,): L' and r-radial}, convolution algebra

Ex.: L'(G//K)if T =1.

(G, K, ) is a Gelfand triple if L' (G//K; ) is commutative.
C*(G/K;7)={F:G— V,:C>and F(gk) = 7(k"")F(9), g € G, "k € K}
smooth sections of the homogeneous vectori bungle E; on G/K associated with 7
D(G/K; 7) = algebra of G-invariant differential operators on E;.
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T-spherical functions on G

(, V)= finite dim irreducible representation of K

f: G — End(V,) is T-radial if f(kigkz) = 7(ky )f(9)T(k; "), Vg € G, Yki, ke € K
L'(G//K;7)={f: G— End(V,): L' and r-radial}, convolution algebra

Ex.: L'(G//K)if = 1.

(G, K, ) is a Gelfand triple if L' (G//K; ) is commutative.

C*(G/K;7)={F:G— V,:C>®and F(gk) = (k" ")F(g), "g € G, "k € K}
smooth sections of the homogeneous vectori bungle E; on G/K associated with 7
D(G/K; 7) = algebra of G-invariant differential operators on E;.

e L'(G//K;T) commutative < D(G/K; 7) commutative

In this case:
7-spherical functions = (normalized) r-radial joint eigenfunctions of D(G/K; 7).
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C*(G/K;7)={F:G— V,:C>®and F(gk) = (k" ")F(g), "g € G, "k € K}
smooth sections of the homogeneous vectori bungle E; on G/K associated with 7
D(G/K; 7) = algebra of G-invariant differential operators on E;.

e L'(G//K;T) commutative < D(G/K; 7) commutative

In this case:

7-spherical functions = (normalized) r-radial joint eigenfunctions of D(G/K; 7).

Other approaches are possible when (G, K, 7) not Gelfand: via representation theory
(Harish-Chandra, Warner, Varadarajan...) or via D(G/K; 7) (Olbrich).
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T-spherical functions on G

(7, V)= finite dim irreducible representation of K

f: G — End(V,) is T-radial if f(kigkz) = 7(ky )f(9)T(k; "), Vg € G, Yki, ke € K
L'(G//K;7)={f: G— End(V,): L' and r-radial}, convolution algebra

Ex.: L'(G//K)if = 1.

(G, K, ) is a Gelfand triple if L' (G//K; ) is commutative.

C*(G/K;7)={F:G— V,:C>®and F(gk) = (k" ")F(g), "g € G, "k € K}
smooth sections of the homogeneous vectori bungle E; on G/K associated with 7

D(G/K; 7) = algebra of G-invariant differential operators on E;.
e L'(G//K;T) commutative < D(G/K; 7) commutative

In this case:
7-spherical functions = (normalized) r-radial joint eigenfunctions of D(G/K; 7).

Other approaches are possible when (G, K, 7) not Gelfand: via representation theory
(Harish-Chandra, Warner, Varadarajan...) or via D(G/K; 7) (Olbrich).

G = KAK ~ r-radial functions are uniquely determined by restriction to A.
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Restricted to A, can 7-spherical functions be expressed in terms of
Heckman-Opdam hyergeometric functions?
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Restricted to A, can 7-spherical functions be expressed in terms of
Heckman-Opdam hyergeometric functions?

o Heckman-Opdam hypergeometric functions are joint eigenfunctions of a
commuting algebra of differential operators.

The possible non-commutativity of D(G/K; 7) is an obstruction.
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Restricted to A, can 7-spherical functions be expressed in terms of
Heckman-Opdam hyergeometric functions?

o Heckman-Opdam hypergeometric functions are joint eigenfunctions of a
commuting algebra of differential operators.

The possible non-commutativity of D(G/K; 7) is an obstruction.
o Open question in general, even when (G, K, 1) is a Gelfand triple.

o Some positive answers:
» 7=1 ~» Heckman-Opdam theory (1989-1994)
» dimr =1 ~» G/K Hermitian symmetric space (Shimeno, 1994)
» Some rank-one cases:

> G/K-=real or complex hyperbolic spaces; case of differential forms or spinors
(Pedon 1997 & 1999, Camporesi-Pedon 2001, Camporesi 2002)

> G/K= quaternionic hyperbolic spaces, K = Sp(1) x Sp(n), 7 = 10 ® 1 (van Dijk-P. 1999).

» When 7 is a small K-type, i.e. if 7|y is irreducible, where M = Zx(A)
(Oda-Shimeno, 2019).
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Restricted to A, can 7-spherical functions be expressed in terms of
Heckman-Opdam hyergeometric functions?

o Heckman-Opdam hypergeometric functions are joint eigenfunctions of a
commuting algebra of differential operators.

The possible non-commutativity of D(G/K; 7) is an obstruction.
o Open question in general, even when (G, K, 1) is a Gelfand triple.

o Some positive answers:
» 7=1 ~» Heckman-Opdam theory (1989-1994)
» dimr =1 ~» G/K Hermitian symmetric space (Shimeno, 1994)
» Some rank-one cases:

> G/K-=real or complex hyperbolic spaces; case of differential forms or spinors
(Pedon 1997 & 1999, Camporesi-Pedon 2001, Camporesi 2002)

> G/K= quaternionic hyperbolic spaces, K = Sp(1) x Sp(n), 7 = 10 ® 1 (van Dijk-P. 1999).

» When 7 is a small K-type, i.e. if 7|y is irreducible, where M = Zx(A)
(Oda-Shimeno, 2019).

o In all the above examples, (G, K, 7) is a Gelfand triple.
Deitmar’s condition: (G, K, 7) is a Gelfand triple <= 7| is multiplicity free.
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T-spherical functions for a small K-type

Oda-Shimeno’s results:

o Case-by-case (using the classification of small K-types, which they completed).

o The restriction to A of r-spherical functions are written in terms of
Heckman-Opdam hypergeometric functions for a triple (a, X7, m™), which is not
necessarily the triple (a, X, m) associated with G/K.

o “Written in terms of” means that Heckman-Opdam’s hypergeometric functions are
multiplied by suitable products of cosh- and sinh-like factors, depending on the two
root systems.

Remarkable, but hard to deal with in a unified way.
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T-spherical functions for a small K-type

Oda-Shimeno’s results:

o Case-by-case (using the classification of small K-types, which they completed).

o The restriction to A of 7-spherical functions are written in terms of
Heckman-Opdam hypergeometric functions for a triple (a, X7, m™), which is not
necessarily the triple (a, X, m) associated with G/K.

o “Written in terms of” means that Heckman-Opdam’s hypergeometric functions are
multiplied by suitable products of cosh- and sinh-like factors, depending on the two
root systems.

Remarkable, but hard to deal with in a unified way.

o When X7 is a BC, root system, it is possible to unify all these specific cases as
elements of a 2-parameter deformation of Heckman-Opdam’s hypergeometric
functions.
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2-parameter deformations of positive multiplicites

> = root system in a of type BC,

W = Weyl group of

Three W-group orbits in X, distinguished by root lenght (short, middle and long roots)
Y=Y uTi UL where

si={Z1<j<ry, si={8<icj<ry, T={8:1<j<r}.
Three values of multiplicities m = (ms, mw, m;). Suppose these three values are > 0.
Consider C; as a BC; root system with ms = 0 and A as a BCy with ms = my, = 0.

For any two real parameters ¢, / we define a deformation m(¢, !7) of m as follows:
[

ms+2¢ ifaeXs BC,

Ma(l,0) = Mn +20 ifa€Tn s

m — 2/ ifa €.
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2-parameter deformations of positive multiplicites

> = root system in a of type BC,

W = Weyl group of X

Three W-group orbits in &, distinguished by root lenght (short, middle and long roots)
Y=Y uTi UL where

si={Z1<j<ry, si={8<icj<ry, T={8:1<j<r}.
Three values of multiplicities m = (ms, mw, m;). Suppose these three values are > 0.
Consider C; as a BC; root system with ms = 0 and A as a BCy with ms = my, = 0.

For any two real parameters ¢, / we define a deformation m(¢, !7) of m as follows:
[

ms+2¢ ifaeXs BC,

Ma(l,0) = Mn +20 ifa€Tn s

m—-2¢ ifaeX.

Rem: (m; +20) + (m —20) =ms+m
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(¢, ¢)-hypergeometric functions
Bj(x)

u(x) = [Tj_y cosh (<3~)

Bj(x)=Bi(x)
v(x) =1Ii<i<j<,cosh (F=%"7)

cosh ( Bj(X);Bi(X) )
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(¢, £)-hypergeometric functions

u(x) = [1._, cosh (%)
V( ) H1</</<r cosh (7[3’()() cosh (W)

o Commutative family of differential operators associated with (a, =, m, (¢, £)):

For x € athe (E,Z)-Cherednik operator T is the difference-reflection operator on a (or
ac) defined by

T, 7. (m) = u vl o Te(m(e, §) o u'v*
Hence
T, p(m) = u™ v o Ty(m(t,D)) otV (p € S(ac))

D, (M) = T, (M)l e oy = U= V=" 0 Dp(m(t. ) o uv" (P € S(ac)")
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(¢, £)-hypergeometric functions

u(x) = [1._, cosh (%)
v(x) = ITi<icj<,cOsh (7,8'()() cosh (W)

o Commutative family of differential operators associated with (a, £, m, (¢, £)):

For x € athe (¢, Z)-Cherednik operator T is the difference-reflection operator on a (or
ac) defined by

T,z(m) = u vl o Te(m(e, §) o u'v*

Hence

T,ip(m) =u v o To(m(t, D)o u'v  (pe S(ac))

Dy, 7 p(M) = Tz p(Mgoe@w = u=v= 0 Do(m(e,0)) o u'v? (€ S(ac)™)

o (¢, Z)-hypergeometr/c function of spectral parameter A € ag:
unique W-invariant analytic function F, ; , (m) on a satisfying the system of diff eqs

D, 7 ,(mF = p(A\)F (p € S(ac)"),
F(0) =1
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(¢, £)-hypergeometric functions

u(x) = [Ij_, cosh (M)
51 Bj Bi
v(x) = Ili<icj<,cOSh (7()() cosh (M)
o Commutative family of differential operators associated with (a, £, m, (¢, £)):

For x € athe (¢, Z)-Cherednik operator T is the difference-reflection operator on a (or
ac) defined by

T,ox(m) = u='v=" o Tu(m(t, B)) o u' V"
Hence
T,opm) = u™v=" o To(m(t, ) o u'v" (€ S(ac))
D, 7 p(m) = T,z p (Moo (@ = = v=" 0 Do(m(, ) o u'v*  (p € S(ac)")
o (¢, Z)-hypergeometr/c function of spectral parameter A € ag:
unique W-invariant analytic function F, ; , (m) on a satisfying the system of diff eqs
z 7 p(m)F P(\F (pe S(aC)W) )
F(0) =1
By construction,

Foza(m) = u=" v=E Fa(m(¢, 1))
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Examples

(1) Write m(/) and Fy,» if £ = 0.
If m= (ms, mm, m = 1) is a geometric multiplicity corresponding to a Hermitian
symmetric space G/K, then the

Fl,)\ = U_Z Fk(m(é))

are the restrictions to A = a of the spherical 7,.-functions, where dimr, = 1
(Shimeno, 1994).
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Write m(/) and Fy, if £ = 0.
If m= (ms, mm, m = 1) is a geometric multiplicity corresponding to a Hermitian
symmetric space G/K, then the

Fl,)\ = U_Z Fk(m(é))

are the restrictions to A = a of the spherical 7,.-functions, where dimr, = 1
(Shimeno, 1994).

More generally, every T-spherical function for G/K where 7 is a small K-type and
G/K has restricted root system of type BC is a (¢, £)-hypergeometric function for

suitable choices of (X, m, (¢, ¢)) where m = (ms, mm, m) is a positive mutliplicity
onzx.
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Examples

(1)

Write m(/) and Fy, if £ = 0.
If m= (ms, mm, m = 1) is a geometric multiplicity corresponding to a Hermitian
symmetric space G/K, then the

Fex = u~" Fa(m(¢))

are the restrictions to A = a of the spherical 7,.-functions, where dimr, = 1
(Shimeno, 1994).

More generally, every 7-spherical function for G/K where 7 is a small K-type and
G/K has restricted root system of type BC is a (¢, £)-hypergeometric function for

suitable choices of (X, m, (¢, ¢)) where m = (ms, mm, m) is a positive mutliplicity
on X.
~~ case-by-case

~» X and m are not necessarily those naturally associated with G/K.
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Examples

(1)

Write m(/) and Fy, if £ = 0.
If m= (ms, mm, m = 1) is a geometric multiplicity corresponding to a Hermitian
symmetric space G/K, then the

Fz,)\ = U_Z Fx(m(f))

are the restrictions to A = a of the spherical 7,.-functions, where dimr, = 1
(Shimeno, 1994).

More generally, every 7-spherical function for G/K where 7 is a small K-type and
G/K has restricted root system of type BC is a (¢, £)-hypergeometric function for

suitable choices of (X, m, (¢, ¢)) where m = (ms, mw, m;) is a positive mutliplicity
onzx.

~~ case-by-case

~» X and m are not necessarily those naturally associated with G/K.
Example: G = Spin(2r, 1) (double cover of SO(2r, 1)), K = Spin(2r)
rﬁt the positive and negative spin representations, i.e. the irreducible
representation of K of heighest weight (1/2,...,1/2,+£1/2).

The root system of G/K is of type A, while the one giving the 7;"-spherical
functions is of type BC;.
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Is there an analog of Helgason-Johnson’s theorem for the

(¢, £)-hypergeometric functions (and hence for the T-spherical function)?
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Is there an analog of Helgason-Johnson’s theorem for the

(¢, £)-hypergeometric functions (and hence for the T-spherical function)?

Foialm) = u™" v=" Fa(m(t. D)
Needed:
o Some restrictions in the parameters (£, /).

~~ symmetries in the various parameters

o Estimates for the F(m(¢, ) and for F, ; , (m)
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Is there an analog of Helgason-Johnson’s theorem for the

(¢, £)-hypergeometric functions (and hence for the T-spherical function)?

Foialm) = u™" v=" Fa(m(t. D)
Needed:
o Some restrictions in the parameters (£, /).

~~ symmetries in the various parameters
o Estimates for the F(m(¢, ) and for F, ; , (m)

m(e,0) = (Ms + 20, My + 20, my — 20).
If £ # 0 then the multiplicites are not positive

All estimates for Heckman-Opdam hypergeometric functions (outside the
geometric cases) have been proved for nonnegative multiplicities.
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Multiplicity functions
M = set of R-valued multiplicity functions m = (ms, mm, m) on X of type BC;.

My={me M:m, >0forevery« € ¥} (non-negative multiplicities)
Mo={me M :mn>0,m+m >0}
My={meM:my>0,m>0,m+2m >0} (standard multiplicities)
Mo={meM:mn>0,m>0ms+m >0}
Mzg={meM:my>0m <0,ms+2m > 0}.

m

A o My =(M"UM;z)°

e My is the natural subset of M on

which both Gx(m) and Fy(m) are def
forall A € ag.

e e The asymptotics of Fx(m) determined
\v = by Narayanan-Pusti-P. (2014) for
m € M hold also for m € Mj.

e The real version of Opdam’s estimates
established (in much stronger form) by
Ho-Olafsson (2014) for m € M, hold
also for m € Ms.

me+m =0 e On Msonam <0but p(m) € (a*)*.

My

> Ms

ms+2m =0
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Estimates of F\(m, x) for x € a

Theorem

Letm € My = M. U Mas. Then the following properties hold on a:
(a) Forall X € a* the functions Fx(m) are real and strictly positive.
(b) [Fx(m)[ < Frex(m).

(c) Forall A€ a*, p€ (a*)t andx € a
Foin(m; x) < Fpu(m; x)em@wew(W)(X)

Schapira, 2008: (a) and (b) for M
Extended to M3 by modifying his arguments.

Koornwinder-Résler-Voit, 2013:  (c) for M4
Extended to M3 by modifying their arguments.
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Foin(m; x) < Fpu(m; x)em@wew(W)(X)

Schapira, 2008: (a) and (b) for M
Extended to M3 by modifying his arguments.

Koornwinder-Résler-Voit, 2013:  (c) for M4
Extended to M3 by modifying their arguments.

o Sharp asymptotics and Harish-Chandra estimates hold on Mj.
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Estimates of F\(m, x) for x € a

Theorem

Letm € My = M. U Mas. Then the following properties hold on a:
(a) Forall X € a* the functions Fx(m) are real and strictly positive.
(b) [Fx(m)]| < Frea(m).

(c) ForallA € a*, p€ (a*)t andx € a
Faiu(m; x) < Fp(m; x)em@wew(WN)()

Schapira, 2008: (a) and (b) for M
Extended to M3 by modifying his arguments.

Koornwinder-Résler-Voit, 2013:  (c) for M4
Extended to M3 by modifying their arguments.

o Sharp asymptotics and Harish-Chandra estimates hold on Mj.

o Can apply these estimates/asymptoticsto F, ;,(m) = u™* vr FA(m(K,Z))

£,0,\
provided m(¢, 27) is a standard multiplicity,
ie. if £ € ] lmin = M = T +m[and /> L
min 2 5 2 = 2
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Symmetries of F, ;, in the parameter ¢

Lemma
Foreverym,tandX:  F,;,(m)=F_, . ;7,(m) J
Geometric case: i
m =1, evenin¢. m(lm\
M (Lin)
M.
m(—l+m —1)
L~ . m = m(0)
(we omit ¢ from notation)
m() m =1
ms

~~ The estimates/asymptotics KEPn )
extend to £ €)lmin — 1, lmax[ v >
(closed intervals for estimates) N My

min = — 5 ‘ )

lmax = 5= +my §

M (lmax.
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G my Linin [
with ¥ = C, 0 0 1
SO@Ent1)| 4 =2 3
C6(—14) 8 -4 5
SUp.9)g>p [2(¢—p) |p—qlg—p+1
My
my) = 1

A. Pasquale (IECL, Metz)
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Bounded (¢, ¢)-hypergeometric functions
Let m = (ms, myn, m) be a nonnegative multiplicity.

pm(e0) = 3 S ma(tDa=p(m)— 5 Sty X (5%6)
j=1

aes+ 1<i<j<r
In particular,
p(m(0,20)) = p(m) +€ Y (B;+ )
1<i<j<r
Since =, ;< (B+ Bi) = Xj_,2(j — 1)5; is a sum of positive roots, then
p(m(0,20)) > p(m) if £ > 0.
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Bounded (¢, ¢)-hypergeometric functions
Let m = (ms, myn, m) be a nonnegative multiplicity.

pm(e0) = 3 S ma(tDa=p(m)— 5 Sty X (5%6)
j=1

acxt 1<i<j<r
In particular,
p(m(0,20)) = p(m)+€ > (B£p)

1<i<j<r
Since =, ;< (B+ Bi) = Xj_,2(j — 1)5; is a sum of positive roots, then
p(m(0,20)) > p(m) if £ > 0.

C(p(m(0,2¢)))= the convex hull of the set {wp(m(0,2¢)) : w e W}.

Theorem

Assume that my > 1 and 7 >0, £ €min — 1, €max[. Then, FZ’Z ,(m) is bounded if and
only if A € C(p(m(0,20))) + ia*.
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Schetch of the proof that

Fe,Z,\
Fyza(m) = u" v Fx(m(¢,0))

(m) is bounded on C(p(m(0, 2¢)))
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Schetch of the proof that F, ;- , (m) is bounded on C(p(m(0, 2¢)))

Foza(m) = u=" v=' Fx(m(e, D))
Since
om0 = pm)— 5 S5+ 3 (B
j=1 1<i<j<r

we have

oD+ 5> G+ g S (6 6) = pm(0,2D))
j=1

1<i<j<r
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Schetch of the proof that F, 7, (m) is bounded on C(p(m(0, 20Y))

Fyza(m) = u" v Fx(m(¢,0))

Since

o D) = p(m)— 5 S5+ 5 S (G 8)
j=1

1<i<j<r

we have

p(m(, e))+22/3, : Z (8 + 81) = p(m(0, 26))

1<i<j<r

|Fo (M )] < Fy g (miX) = u=" ()V = (X) Frex (m(£, £); X)

By the maximum modulus principle, the maximum of |F, 7 , (m; x)| is then attained at

{wp(m(0,20)) : we W}

A. Pasquale (IECL, Metz) Bounded hypergeometric functions SL2R, May 12-13, 2022

20/21



Schetch of the proof that F, 7, (m) is bounded on C(p(m(0, 20Y))

Fyza(m) = u" v Fx(m(¢,0))

Since

o D) = p(m)— 5 S5+ 5 S (G 8)
j=1

1<i<j<r
we have
p(m(e,0) + 5 Zﬂ/ 2 Z (Bj £ Bi) = p(m(0,2¢))
1<i<j<r
|Fo 2 (5 X)] < Fy e (3 X) = U= ()v =7 (%) Fiex (m(£, £); x)
By the maximum modulus principle, the maximum of |F, 7 , (m; x)| is then attained at

{wp(m(0,20)) : we W}
Thus -~ ~
|Fex(m; x)| < u_E(X)V_Z(X)Fp(m(ZZ))(m(£7 £); ).
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Schetch of the proof that F, 7, (m) is bounded on C(p(m(0, 20Y))

Fyza(m) = u" v Fx(m(¢,0))

Since

o D) = p(m)— 5 S5+ 5 S (G 8)
j=1

1<i<j<r
we have . _
~ Y/ Y4 ~
Am0)+ 5> Gi+5 > (B+5) = p(m(0,20)
j=1 1<i<j<r
Py 2 (M X)| < Fy ppen (M x) = u= (x)v=5(X) Fre A (M(L, £); X)
By the maximum modulus principle, the maximum of |F, 7 , (m; x)| is then attained at

{wp(m(0,20)) : we W}
Thus _
[Fex(m; x)| < u™ OV (X)F i (m(z,Z);x).

p(m(t,0)) € (a7)*. Can apply Fayu(x) < F, (x)e”‘axwew(w*) and
Fomte. (M D) X) = 1. 0
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Thank you!

Leiden, 2004
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