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Abstract We investigate the semigroup associated with the dual Vinberg cone and
prove its triple and Ol’shanskiı̆ polar decompositions. Moreover, we show that the
semigroup does not have the contraction property with respect to the canonical Rie-
mannian metric on the cone.
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1 Introduction and Preliminaries

Semigroups of transformations leaving invariant a given set is a well-known tool in
various fields of mathematics, for example, invariant convex cone theory and geo-
metric control theory. In Lie group setting, probably the most important compression
semigroups come from the Ol’shanskiı̆ semigroups, i.e., compression semigroups of
symmetric spaces GC/G, where G is a Hermitian Lie group. One extremely use-
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ful structure property of such semigroups is the existence and uniqueness of the
Ol’shanskiı̆ polar decomposition G exp(iC), where C is a convex cone in the Lie
algebra of G which is invariant under the adjoint action of G. This decomposition
has many applications to representations theory, see for example [4, 11, 12].

A compression semigroup associated naturally to an Euclidean Jordan algebra
E was introduced in [6]. It is the compression semigroup of a symmetric cone C
(the open cone of invertible squares in E), � := {g ∈ Co(E) | g(C) ⊂ C}, where
Co(E) is the conformal group of E . This semigroup � satisfies the Ol’shanskiı̆
polar decomposition and, in addition, � admits a triple decomposition. Furthermore,
elements of � are proved to be contractions for the invariant Riemannian metric on C
[6, 7] and also for the Hilbert metric [8] and the Finsler metric [10]. The contraction
property has many applications, for example, in Kalman Filtering theory (for the
Hamiltonian semigroup) [1].

The purpose of this article is to study the compression semigroup of a homoge-
neous non-symmetric convex cone, which gives a new example of Lie semigroups
admitting both the Ol’shanskiı̆ polar decomposition and a triple decomposition, but
does not have the contraction property with respect to the canonical metric. More
precisely, the homogeneous cone � is given by

� := {
x ∈ R

5 | x1 > 0, x2 > 0, x1x2x3 − x1x2
5 − x2x2

4 > 0
}
,

which is called the dual Vinberg cone [13, 14].
Let us first summarize some well-known facts about the real symplectic group

and the symplectic semigroup, which will be utilized frequently in the investigation
of the cone �. Let Sym(3, R) denote the space of 3 × 3 real symmetric matrices,
and Sym+(3, R) (resp. Sym++(3, R)) the subset of positive (resp. positive definite)
matrices. Then, Sym++(3, R) is a symmetric cone in the Euclidean Jordan algebra
Sym(3, R) with the inner product given by (x |y) = tr xy. Denote by �1,�2 and �3

the principal minors of matrices in Sym(3, R). For a matrix M , denote by MT its
transpose, and if M is invertible, M−T will denote (MT )−1.

Recall the symplectic group Sp(6, R) = {g ∈ GL(6, R) | gJgT = J } with J =(
0 −I
I 0

)
. In a block form, an element g =

(
A B
C D

)
∈ GL(6, R) with A, B, C, D ∈

Mat(3, R) belongs to Sp(6, R) if and only if

AT C , DT B ∈ Sym(3, R),

DT A − BT C = I,
(1.1)

or equivalently
B AT , C DT ∈ Sym(3, R),

ADT − BCT = I.
(1.2)

Lemma 1.1 An element g =
(

A B
C D

)
∈ Sp(6, R) has a unique triple decomposition
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(
A B
C D

)
=

(
I v

0 I

) (
L 0
0 L−T

) (
I 0
u I

)
(1.3)

with u, v ∈ Sym(3, R) and L ∈ GL(3, R) if and only if D is invertible, and in this
case

L = D−T = A − B D−1C, v = B D−1 and u = D−1C. (1.4)

It is well known that the symplectic group Sp(6, R) acts on the Siegel upper half
space TSym++(3,R) := Sym(3, R) + i Sym++(3, R) by linear fractional transforma-
tions, that is,

g · z = (Az + B)(Cz + D)−1, where g =
(

A B
C D

)
∈ Sp(6, R), z ∈ TSym++(3,R)

which induces an isomorphism from Sp(6, R)/{±I } onto the holomorphic automor-
phism group G(TSym++(3,R)) of TSym++(3,R). Since Sym(3, R) is the Šilov boundary of
TSym++(3,R), the action of Sp(6, R) is extended on Sym(3, R) (precisely, one should
consider a conformal compacitification of Sym(3, R) on which the actions of all the
elements g ∈ Sp(6, R) are well-defined [5]). In this action, we consider the com-
pression semigroup (called also the symplectic semigroup) of the symmetric cone
Sym++(3, R),

�Sp := {
g ∈ Sp(6, R) | g · Sym++(3, R) ⊂ Sym++(3, R)

}

which is a closed subsemigroup of Sp(6, R).
It was proved in [6] that �Sp can be given by

�Sp =
{(

A B
C D

)
∈ Sp(6, R) | D ∈ GL(3, R), C DT , DT B ∈ Sym+(3, R)

}
(1.5)

and has a triple decomposition �Sp = �+
SpG(3, R)�−

Sp, where

�+
Sp :=

{(
I B
0 I

)
| B ∈ Sym+(3, R)

}
,

G(3, R) :=
{(

A 0
0 A−T

)
| A ∈ GL(3, R)

}
,

�−
Sp :=

{(
I 0
C I

)
| C ∈ Sym+(3, R)

}
.

It was also proved that the symplectic semigroup satisfies the following Ol’shanskiı̆
polar decomposition �Sp = G(3, R) exp(CSp), where CSp is the closed convex cone

CSp :=
{(

0 B
C 0

)
∈ sp(6, R) | B, C ∈ Sym+(3, C)

}
,
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and sp(6, R) is the Lie algebra of Sp(6, R), that is,

sp(6, R) = {X ∈ M(3, R) | X J + J X T = 0}
=

{(
A B
C −AT

)
| A ∈ Mat(3, R), B, C ∈ Sym(3, R)

}
.

Now we turn to the dual Vinberg cone �. Let V be the subspace of Sym(3, R)

defined by

V :=
⎧
⎨

⎩
x =

⎛

⎝
x1 0 x4
0 x2 x5
x4 x5 x3

⎞

⎠ , x1, . . . , x5 ∈ R

⎫
⎬

⎭
.

Then � is naturally identified with the intersection Sym++(3, R) ∩ V , that is,

� = {x ∈ V | �1(x) > 0,�2(x) > 0,�3(x) > 0}
= {x ∈ V | x is positive definite}.

Let T� := V + i� ⊂ VC be the tube domain over �, G(T�) the identity compo-
nent of the holomorphic automorphism group on the tube domain T�, and � the
compression semigroup

� := {g ∈ G(T�) | g · � ⊂ �} (1.6)

of �. This semigroup � is a main object of the present work.
Here, we explain the organization of this paper. In Sect. 2, we describe the group

G(T�) as a subgroup of Sp(6, R). Then, we give a characterization of � as a subset
of G(T�) using the triple decomposition in Sect. 3. In Sect. 4, we show that � also
admits an Ol’shanskiı̆ polar decomposition. Finally, in Sect. 5, we show that � does
not have a contraction property with respect to the canonical Riemannian metric on
�.

We should like to thank the anonymous referee for the careful reading of this
work. The second author is grateful to Institute Elie Cartan of Lorraine for providing
him a visiting professor position in March 2011, where the present research began.
This work was partially supported by KAKENHI 20K03657 and Osaka City Uni-
versity Advanced Mathematical Institute (MEXT Joint Usage/Research Center on
Mathematics and Theoretical Physics JPMXP0619217849).

2 The Holomorphic Automorphism Group of T�

First we shall determine the linear automorphism group G(�) := {g ∈ GL(V ) | g ·
� = �} of the cone �. Define
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H :=
⎧
⎨

⎩
A =

⎛

⎝
a1

0 a2

a4 a5 a3

⎞

⎠ | a1, . . . , a5 ∈ R, a1a2 �= 0, a3 > 0

⎫
⎬

⎭
,

and let H+ be the subset of H consisting of diagonal matrices with positive entries.
Then H forms a Lie group, and H+ is its identity component. Let ρ : H → GL(V )

be the representation of H given by ρ(A)x := Ax AT (A ∈ H, x ∈ V ). Then H+
as well as H acts transitively on the cone � ⊂ V by ρ. In other words, we have
ρ(H) ⊂ G(�) and � = ρ(H+)I3. For a parameter (s1, s2, s3) ∈ C

3, let �(s1,s2,s3) be
the function on � given by

�(s1,s2,s3)(x) := �1(x)s1−s2�2(x)s2−s3�3(x)s3

= xs1−s3
1 xs2−s3

2 (det x)s3 (x ∈ �).

The function �(s1,s2,s3) is relatively invariant under the action of H+:

�(s1,s2,s3)(ρ(A)x) = a2s1
1 a2s2

2 a2s3
3 �(s1,s2,s3)(x) (x ∈ �, A ∈ H+). (2.1)

Indeed, this equality characterizes the function �(s1,s2,s3) up to a constant multiple.
Let�∗ ⊂ V be the dual cone of�.Namely,�∗ := {

ξ ∈ V | (x |ξ) > 0 for all x ∈ � \ {0}}.
The so-calledKöcher–Vinberg characteristic functionϕ� of� is definedbyϕ�(x) :=∫
�∗ e−(x |ξ) dξ for x ∈ �. It is known (see [3, Proposition I.3.1]) that, for any

g ∈ G(�), we have

ϕ�(gx) = |Det g|−1ϕ�(x) (x ∈ �). (2.2)

For A = diag(a1, a2, a3) ∈ H and x ∈ V , we observe that

ρ(A)x =
⎛

⎝
a2
1x1 0 a1a3x4
0 a2

2x2 a2a3x5
a1a3x4 a2a3x5 a2

3x3

⎞

⎠ ,

so that Det ρ(A) = a3
1a3

2a4
3 . For a general A ∈ H+, because of the factorization A =

diag(a1, a2, a3)A′ with a unipotent A′ ∈ H+, we have again Det ρ(A) = a3
1a3

2a4
3 .

Therefore, comparing (2.1) and (2.2), we conclude that there exists a constant C > 0
for which

ϕ�(x) = C�(−3/2,−3/2,−2)(x) = Cx1/2
1 x1/2

2 (det x)−2. (2.3)

Let G(�)I3 be the isotropy subgroup of G(�) at I3 ∈ �, and take g ∈ G(�)I3 . In
general, for a function F on �, we denote by g∗F the pullback F ◦ g. Since G(�)I3
is a compact group, we have |Det g| = 1, so that g∗ϕ2

� = ϕ2
� thanks to (2.2). Thus,

by the uniqueness of irreducible factorization of the rational function ϕ2
�, we have

g∗x1 = C1x1, g∗x2 = C2x2, g∗det x = C3det x (2.4)
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or
g∗x1 = C1x2, g∗x2 = C2x1, g∗det x = C3det x (2.5)

withC1C2C3 = 1. On the other hand, since g · I3 = I3, we have C1 = C2 = C3 = 1.
Let us consider the case (2.4). We have g∗det x = det x , which means that

x1x2(g
∗x3) − x1(g

∗x5)
2 − x2(g

∗x4)
2 = x1x2x3 − x1x2

5 − x2x2
4 . (2.6)

From this equality, we deduce g∗x5 = ±x5 + αx2 with some α ∈ R. In fact, if g∗x5
would contain other terms, for instance γx3, then the left-hand side should contain the
term of x1x3x5, which does not appear in the right-hand side. By the same argument,
we have g∗x4 = ±x4 + βx1 with some β ∈ R. Actually, we have (2.6) in this case
with

g∗x3 = x3 + β2x1 + α2x2 ± 2βx4 ± 2αx5.

On the other hand, since g · I3 = I3, we have α = β = 0. Therefore we conclude
that g = ρ(diag(±1,±1, 1)).

Let us turn to the case (2.5). Put σ =
⎛

⎝
0 1 0
1 0 0
0 0 1

⎞

⎠. Then ρ(σ) : x = (x1, . . . , x5) 
→

(x2, x1, x3, x5, x4) belongs to G(�)I3 satisfying (2.5). Furthermore, if g ∈ G(�)I3
satisfies (2.5), then g ◦ ρ(σ) satisfies (2.4). Now we conclude that

Lemma 2.1 The isotropy subgroup G(�)I3 is a finite group of order 8 generated by
ρ(diag(−1, 1, 1)), ρ(diag(1,−1, 1)), and ρ(σ).

Corollary 2.1 One has G(�) = ρ(H+) � G(�)I3 .

We extend the action of G(�) to T� by g(z) = g(x) + ig(y), z = x + iy. The
translation tv : z 
→ z + v by v ∈ V is a holomorphic automorphism of T�, and the
group N+ of all such translations is an Abelian group isomorphic to V . The rational
map s on T� defined by

s : T� � z 
→
⎛

⎝
− 1

z1
0 z4

z1
0 − 1

z2
z5
z2

z4
z1

z5
z2

det z
z1z2

⎞

⎠ ∈ T�

belongs to G(T�). Note that s2= ρ(diag(−1,−1, 1)) �= Id, so that s is not an invo-
lution, but s4 = I d. Let V ′ be the subspace of V defined by

V ′ :=
⎧
⎨

⎩
u =

⎛

⎝
u1 0 0
0 u2 0
0 0 0

⎞

⎠ | u1, u2 ∈ R

⎫
⎬

⎭
.

For any u ∈ V ′, let t̃u = s ◦ tu ◦ s and denote by N− the subgroup of G(T�) of these
transformations.
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Keeping inmind the inclusion T� ⊂ TSym++(3,R), we shall realize the group G(T�)

as a subgroup of G(TSym++(3,R)) (see Theorem 2.2). In other words, we shall see that
any g ∈ G(T�) can be described by an element of Sp(6, R). For A ∈ H , the corre-

sponding ρ(A) ∈ G(�) is induced by the matrix

(
A 0
0 A−T

)
∈ G(3, R) ⊂ Sp(6, R).

For v ∈ V , we identify the translation tv : T� � z 
→ z + v ∈ T� with the matrix(
I v

0 I

)
∈ Sp(6, R). In this way, we regard G0 := ρ(H) and N+ as subgroups of

Sp(6, R). On the other hand, from a straightforward calculation, we see that the map
s corresponds to the matrix

⎛

⎜⎜⎜⎜⎜⎜
⎝

0 −1
0 −1
1 0

1 0
1 0
0 1

⎞

⎟⎟⎟⎟⎟⎟
⎠

∈ Sp(6, R).

Then, an easy matrix calculation tells us that the transform t̃u = stus−1 ∈ N− corre-

sponds to

(
I 0

−u I

)
∈ Sp(6, R).

Put p0 = i I ∈ T� and let K = {g ∈ G(T�) | g · p0 = p0} be the isotropy sub-
group of G(T�) at the point p0.

Lemma 2.2 (cf.[2, Lemma 4.1]) One has

K =
{

kθ,φ =
(

Cθ,φ −Sθ,φ

Sθ,φ Cθ,φ

)
| θ,φ ∈ [0, 2π)

}
,

where

Cθ,φ =
⎛

⎝
cos θ

cosφ
1

⎞

⎠ , Sθ,φ =
⎛

⎝
sin θ

sin φ
0

⎞

⎠ .

Theorem 2.1 The group G(T�) is generated by G0, N+ and s.

Proof Let us take any g ∈ G(T�) and put z = g · p0. Since y = �z ∈ �, we can
find A ∈ H for which ρ(A) · I = y. Putting x = z ∈ V , we have g · p0 = z =
txρ(A) · p0, so that k = ρ(A)−1t−1

x g belongs to K . Since g = txρ(A)k, it is enough
to show that k is generated by N+, G0 and s.

By Lemma 2.2, we have k = kθ,φ with some θ,φ ∈ [0, 2π). First we consider the
case θ = φ. If θ �= π

2 , 3π
2 , then det Cθ,θ = cos2 θ �= 0, and we have

kθ,θ = tvρ(A)t̃−u ∈ N+G0N−

with
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A = (Cθ,θ)
−T ∈ H, u = (Cθ,θ)

−1Sθ,θ ∈ V ′, v = −Sθ,θ(Cθ,θ)
−1 ∈ V

thanks to Lemma 1.1. Thus kθ,θ is generated by N+, G0 and s in this case. For the
case that θ = π

2 and θ = 3π
2 , the element kθ,θ equals s and s−1, respectively, so that

the claim holds for these cases, too.
Now we consider a general kθ,φ. We can take an appropriate α ∈ R for which

det Cθ+α,φ+α �= 0. Similarly to the argument above, we see from Lemma 1.1 that
kθ+α,φ+α ∈ N+G0N−. Finally, we have kθ,φ = k−α,−αkθ+α,φ+α, which completes the
proof. �

Weremark thatG0 is not equal to thewhole groupG(�), but is a subgroupofG(�)

of index 2. Indeed, ρ(σ) ∈ G(�) \ G0, and ρ(σ) is a holomorphic automorphism on
T� but not an element of G(T�). We also note that G0 is not connected. Its identity
component is ρ(H+).

Let us give another explicit description of the group G(T�) as a subgroup of
Sp(6, R). We set

W : =
⎧
⎨

⎩

⎛

⎝
x1 0 x6
0 x2 x7
x4 x5 x3

⎞

⎠ | x1, . . . , x7 ∈ R

⎫
⎬

⎭
,

H ′ :=
⎧
⎨

⎩

⎛

⎝
a1 0 0
0 a2 0
a4 a5 a3

⎞

⎠ | a1, . . . , a5 ∈ R, a3 > 0

⎫
⎬

⎭
,

Then, we have

A, B ∈ H ′ ⇒ AB ∈ H ′, (2.7)

A ∈ H ′, w ∈ W ⇒ Aw, wAT ∈ W, (2.8)

A ∈ H ′, u ∈ V ′ ⇒ u A, AT u ∈ V ′, (2.9)

and
A ∈ H ′, u ∈ V ′, w ∈ W ⇒ A + wu ∈ H ′. (2.10)

Define

G :=
{(

A B
C D

)
∈ Sp(6, R) | A ∈ H ′, B ∈ W, C ∈ V ′, DT ∈ H ′

}
. (2.11)

Let us check that G is a subgroup of Sp(6, R). For two elements g =
(

A B
C D

)
and

g′ =
(

A′ B ′
C ′ D′

)
of G, we have
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gg′ =
(

AA′ + BC ′ AB ′ + B D′
C A′ + DC ′ C B ′ + DD′

)
.

Then, we see from (2.7) to (2.10) that

AA′ + BC ′ ∈ H ′, AB ′ + B D′ ∈ W, C A′ + DC ′ ∈ V ′, (C B ′ + DD′)T ∈H ′,

so that gg′ ∈ G. On the other hand, since G ⊂ Sp(6, R), we have

g−1 =
(

0 I
−I 0

)
gT

(
0 −I
I 0

)
=

(
DT −BT

−CT AT

)
,

for g =
(

A B
C D

)
∈ G, whence we see that g−1 ∈ G.

Theorem 2.2 The linear fractional action of Sp(6, R) on the Siegel upper half plane
TSym++(3,R) induces an isomorphism from G onto G(T�).

Proof For g =
(

A B
C D

)
∈ G and z ∈ T�, we obtain Az + B ∈ WC by (2.8) and

(Cz + D)T ∈ H ′
C
by (2.10), so that we have g · z ∈ WC by (2.8). On the other

hand, since g ∈ Sp(6, R) and z ∈ TSym++(3,R), we have g · z ∈ TSym++(3,R). Thus,
g · z ∈ T� = TSym++(3,R) ∩ WC, and we have a group homomorphism from G into
G(T�). Thanks to Theorem 2.1, the map is surjective because G contains the matri-
ces corresponding to tv ∈ N+ (v ∈ V ), ρ(A) ∈ G0 (A ∈ H) and s. Let us show the
injectivity. Take g ∈ G such that g · z = z for all z ∈ T�. Then, g · p0 = p0 together

with g ∈ Sp(6, R) implies g =
(

A −B
B A

)
with A + i B ∈ U (3). Since g ∈ G, we

have A ∈ H ′, AT ∈ H ′ and B ∈ V ′. Thus, we get A = Cθ,φ and B = Sθ,φ with some
θ,φ ∈ [0, 2π). Let us consider z ∈ T� with z1 = z2 = i . Then

g ·
⎛

⎝
i 0 z4
0 i z5
z4 z5 z3

⎞

⎠ =
⎛

⎝
i 0 eiθz4
0 i eiφz5

eiθz4 eiφz5 z3 + z24eiθ sin θ + z25eiφ sin φ

⎞

⎠ .

Thus, g · z = z implies θ = φ = 0, so that g = I . �

We see from Theorem 2.2 that each g ∈ G(T�) is uniquely extended to a linear
fractional transform on TSym++(3,R). Let us present one more description of the group
G:

Proposition 2.1 One has

G =
{(

A B
C D

)
∈ Sp(6, R) | A ∈ H ′, DT ∈ H ′, DT B ∈ V, C DT ∈ V ′

}
.
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Proof Let G ′ be the right-hand side. By (1.1), (2.8), and (2.9), we have G ⊂ G ′.
To show the converse inclusion, we take g ∈ G ′ with det D �= 0. By (2.8) and (2.9)
again, we get B = D−T (DT B) ∈ W and C = (C DT )D−T ∈ V ′. Thus g ∈ G. Since
both G and G ′ are closed subset of Mat(6, R), we obtain G ′ ⊂ G by a closure
argument. �

Let ϒ ⊂ G(T�) be the set consisting of g ∈ G(T�) such that there exist v ∈
V, A ∈ H and u ∈ V ′ for which g = tvρ(A)t̃u . Identifying G(T�) with G by
Theorem 2.2, we get an explicit description of the set ϒ .

Proposition 2.2 One has

ϒ =
{(

A B
C D

)
∈ G | det D �= 0

}
.

Therefore, ϒ is an open dense subset of G(T�).

Proof Let ϒ ′ be the right-hand side. The inclusion ϒ ⊂ ϒ ′ follows from Lemma

1.1. To show the converse inclusion, we take g =
(

A B
C D

)
∈ ϒ ′. Then, we have the

equality (1.3) and (1.4). In particular, v = B D−1 ∈ Sym(3, R) belongs toW by (2.8),
so thatwe get v ∈ V = Sym(3, R) ∩ W . On the other hand,we haveu = D−1C ∈ V ′
by (2.9) and L = D−T ∈ H . Thus, g = tvρ(L)t̃−u ∈ ϒ and the assertion is verified.

�

3 The Triple Decomposition of �

We shall investigate decomposition structures of the compression semigroup �

defined by (1.6). More precisely, we will prove that any element g of the semi-
group � admits a triple decomposition g = tvρ(A)t̃−u , which is unique by Lemma
1.1.

Consider the following two closed subsemigroups of �

�+ := {
tv | v ∈ �

} =
{(

I v

0 I

)
| v ∈ �

}
,

�− := {
t̃−u | u ∈ �

} =
{(

I 0
u I

)
| u ∈ � ∩ V ′

}
,

and

�+0 := {tv | v ∈ �} =
{(

I v

0 I

)
| v ∈ �

}
,

�−0 := {
t̃−u | u ∈ �

} =
{(

I 0
u I

)
| u ∈ � ∩ V ′

}
.
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The latest are two subsemigroups of the interior �0 of �. Now we state our first main
theorem.

Theorem 3.1 The semigroup � is contained in ϒ . Moreover, one has � = �+G0�
−.

Proof First we observe that for g =
(

A B
C D

)
∈ G with

A =
⎛

⎝
a1

0 a2

a4 a5 a3

⎞

⎠ , B =
⎛

⎝
b1 0 b6
0 b2 b7
b4 b5 b3

⎞

⎠ , C =
⎛

⎝
c1 0 0
0 c2 0
0 0 0

⎞

⎠ , D =
⎛

⎝
d1 0 d4

d2 d5
d3

⎞

⎠ ,

the equality ADT − BCT = I implies

akdk − bkck = 1 (k = 1, 2). (3.1)

Moreover, if z′ = g · z ∈ VC with z ∈ VC, then

z′
k = ak zk + bk

ck zk + dk
(k = 1, 2). (3.2)

Nowwe suppose g /∈ ϒ , whichmeansdet D = 0 byProposition 2.2. Since DT ∈ H ′,
we have d1 = 0 or d2 = 0. If d1 = 0, we have c1 = − 1

b1
�= 0 by (3.1). Let us consider

the case

z =
⎛

⎝
x1 0 0
0 1 0
0 0 1

⎞

⎠ ∈ V .

By (3.2), we have z′
1 = −a1b1 − b2

1
x1
, so that we can take x1 > 0 for which z′

1 < 0.
Then z ∈ � and z′ = g · z /∈ �, which imply that g /∈ �. Similarly, we can show
g /∈ � if d2 = 0. Therefore, we conclude that � ⊂ ϒ .

Now take g ∈ � and let g = tvρ(A)t̃−u (u ∈ V ′, A ∈ H, v ∈ V ) be a triple
decomposition. Let {xn}∞n=1 ⊂ � be a sequence converging to 0. Then, � � g · xn =
v + ρ(A)t̃−u xn → v as n → ∞, so that we get v ∈ �. Thanks to (3.2), we have

z′
k = vk + a2

k zk

zk+uk
(k = 1, 2) for z′ = g · z ∈ VC with z ∈ VC. In particular, if u1 < 0,

then g · x is not defined for

x =
⎛

⎝
−u1 0 0
0 1 0
0 0 1

⎞

⎠ ∈ �,

which contradicts g ∈ �. Therefore u1 ≥ 0. We see that u2 ≥ 0 similarly, which
completes the proof of the theorem. �

As a consequence, we have
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�Sp ∩ G = � and �0
Sp ∩ G = �0. (3.3)

Let us describe � in a matrix block form.

Proposition 3.1 One has

� =
{(

A B
C D

)
∈ G | det (D) �= 0, DT B ∈ �, C DT ∈ � ∩ V ′

}
.

Proof Let g = tvρ(L)t̃−u be the triple decomposition of g ∈ �. Thanks to (1.4), we
have u = D−1C = D−1(C DT )D−T and v = B D−1 = D−T (DT B)D−1. Therefore,
the assertion follows from Theorem 3.1. �

4 The Ol’shanskiı̆ Polar Decomposition of �

We see from (2.11) that the Lie algebra g of G equals the subalgebra of sp(6, R)

given by

g =
{(

A v

u −AT

)
| A ∈ h, v ∈ V, u ∈ V ′

}
,

where h is the Lie algebra of H ⊂ GL(3, R), that is,

h =
⎧
⎨

⎩

⎛

⎝
a1

0 a2

a4 a5 a3

⎞

⎠ | a1, . . . , a5 ∈ R

⎫
⎬

⎭
.

Then, g is graded by ad(Z0) with Z0 :=
(

I/2 0
0 −I/2

)
∈ g. Namely, if gk :=

{ X ∈ g | [Z0, X ] = k X }, then g = g−1 ⊕ g0 ⊕ g1 with

g−1 =
{ (

0 0
u 0

)
| u ∈ V ′

}
, g0 =

{ (
A 0
0 −AT

)
| A ∈ h

}
, g1 =

{(
0 v

0 0

)
| v ∈ V

}
.

Let

C :=
{(

0 v

u 0

)
| v ∈ �, u ∈ � ∩ V ′

}
.

Then C is an Ad(G(�))-invariant closed convex cone in g−1 ⊕ g1 which is proper
(C ∩ −C = {0}) and generating (C0 �= ∅). Its interior C0 is the set of matrices with
v ∈ � and u ∈ � ∩ V ′.

Theorem 4.1 The compression semigroup � has the following Ol’shanskiı̆ polar
decomposition

� = G0 exp(C)
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with �0 = G0 exp(C0) as interior.

Proof Let us denote S := G0 exp(C) and prove that � = S.
First by [9, 12] it follows that S is a closed subsemigroup of G. Further, it is clear

that�+ = exp(�̄),�− = exp(�̄ ∩ V ′) and G0 are closed subsemigroups of S. Thus,
we have � ⊂ S by Theorem 3.1.

On the other hand, since G0 and exp(C) are subsemigroups of �Sp, we see that
G0 exp(C) ⊂ �Sp. In addition, G0 ⊂ G and exp(C) ⊂ G, so that S = G0 exp(C) is
contained in both G and �Sp. Therefore, S ⊂ � thanks to (3.3). �

5 A Counter-Example to the Contraction Property of �

On a proper open convex cone C ⊂ R
n , the second derivative of the logarithm of

the Köcher–Vinberg characteristic function ϕC of C gives a canonical Riemannian
metric (see [3, Sect. I.4], [14, Chap. I, Sect. 3]):

(v|v′)x := Dv Dv′ logϕC(x) (v, v′ ∈ R
n, x ∈ C),

where Dv denotes the directional derivative in v. Thanks to the relative invariance of
ϕC under the action of the linear automorphism group G(C) (see (2.2)), the canonical
metric is G(C)-invariant. In particular, if C is a symmetric cone, the metric makes C
a Riemannian symmetric space. For example, if C = Sym++(3, R), then the metric
is given by the formula

(v|v′)x = 2tr (x−1vx−1v′) (v, v′ ∈ Sym(3, R), x ∈ Sym++(3, R)). (5.1)

It is proved in [6, Sect. 5] that, if C is symmetric, the compression semigroup �C of
C has the contraction property with respect to the canonical metric, that is,

(J (g, x)v|J (g, x)v)g(x) ≤ (v|v)x (g ∈ �C, x ∈ C, v ∈ R
n),

where J (g, x) stands for the Jacobi matrix of g at x . We shall see that it is no longer
the case when C is the dual Vinberg cone �.

Recalling (2.3), we see that the canonical Riemannian metric on � is given by

(v|v′)x = −1

2

(v1v
′
1

x2
1

+ v2v
′
2

x2
2

)
+ 2 tr (x−1vx−1v′) (v, v′ ∈ V, x ∈ �). (5.2)
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Nowwe consider the case v = v′ =
⎛

⎝
1 0 1
0 0 0
1 0 1

⎞

⎠ and x = I3. Then (v|v)x = − 1
2 + 2 ×

4 = 7.5. In view of Theorem 3.1, we put g0 := tv0 ∈ � with v0 :=
⎛

⎝
1 0 −1
0 1 0

−1 0 1.01

⎞

⎠ ∈

�. Then g0(x) = In + v0 =
⎛

⎝
2 0 −1
0 2 0

−1 0 2.01

⎞

⎠ ∈ � and J (g0, x)v = v since g0 is a

translation. We observe

(J (g0, x)v|J (g0, x)v)g0(x) = −1

8
+ 2

(6.01
3.02

)2 = 7.795 · · · > 7.5 = (v|v)x .

This phenomenon is caused by a behavior of ‘the extra term’− 1
2 (

v1v
′
1

x2
1

+ v2v
′
2

x2
2

) in (5.2),

compared with (5.1). Actually, the decrease of the second term 2 tr(x−1vx−1v′) is

little (from 8 to 2
(
6.01
3.02

)2 = 7.920 · · · ), while the extra term increases from −1/2 to

−1/8.
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