

Algèbre 2 **Partiel du 10/11/2015**

Calculatrices et documents non autorisés. Durée 2h

Exercice 1. (a) Déterminer tous les sous-groupes du groupe \mathbb{U}_{42} .

- (b) Déterminer les générateurs du sous-groupe d'ordre 7 de \mathbb{U}_{42} .
- (c) Résoudre dans \mathbb{U}_{42} l'équation $x^7 = 1$.

Solution. Le groupe \mathbb{U}_{42} est cyclique d'ordre 42 engendré par $\xi = e^{2i\pi/42} = e^{i\pi/21}$. (a) Les sous-groupes de \mathbb{U}_{42} sont donc en correspondance avec les diviseurs d de son ordre : 1, 2, 3, 6, 7, 12, 14, 21, 42. On note H_d le sous-groupe d'ordre d.

```
-H_{1} = \{1\}.
-H_{2} = \langle \xi^{42/2} \rangle = \langle \xi^{21} \rangle = \langle e^{i\pi} \rangle = \{-1, 1\}
-H_{3} = \langle \xi^{42/3} \rangle = \langle \xi^{14} \rangle = \langle e^{2i\pi/3} \rangle = \{1, j, j^{2}\}.
-H_{6} = \langle \xi^{42/6} \rangle = \langle \xi^{7} \rangle = \langle e^{i\pi/3} \rangle.
-H_{7} = \langle \xi^{42/7} \rangle = \langle \xi^{6} \rangle = \langle e^{2i\pi/7} \rangle.
-H_{12} = \langle \xi^{42/12} \rangle = \langle \xi^{7/3} \rangle = \langle e^{i\pi/6} \rangle
-H_{14} = \langle \xi^{42/14} \rangle = \langle \xi^{3} \rangle = \langle e^{i\pi/7} \rangle
-H_{42} = \mathbb{U}_{42}.
```

- (b) H_7 est un sous-groupe cyclique d'ordre 7 engendré par $a = e^{2i\pi/7}$. Il admet $\varphi(7) = 6$ générateurs qui sont $a, a^2, a^3, a^4, a^5, a^6$.
- (c) L'ensemble $\{x \in \mathbb{U}_{42}; x^7 = 1\}$ n'est autre que le sous-groupe H_6 de \mathbb{U}_{42} d'ordre 6.

Exercice 2. Soit G un groupe d'ordre 21 qui agit sur un ensemble à 20 éléments. On suppose que G ne fixe aucun élément de E. Combien y a-t il d'orbites pour cette action?

Solution. Si \mathcal{O} est une orbite de l'action de G sur E, alors $\mathbf{card}(\mathcal{O})$ divise |G|=21. Donc $\mathbf{card}(\mathcal{O}) \in \{1,3,7,21\}$. Comme G ne fixe aucun élément de E, $\mathbf{card}(\mathcal{O}) \neq 1$. Les orbites étant une partiction de E, donc $\mathbf{card}(\mathcal{O}) \neq 21$ (car 21 > 20). Soit n le nombre d'orbites de cardinal 3 et m le nombre d'orbites de cardinal 7. On a alors (équation des classes) 3n+7m=20. Modulo 3 cette équation est réduite à $m \equiv 2[3]$ et modulo 7 elle est réduite à $n \equiv 2[7]$. Donc les seuls valeurs possibles sont n=2 et m=2. Il y donc deux orbites à 3 éléments et deux orbites à 7 éléments.

Exercice 3. Soient H et N deux groupes, $\varphi, \psi: H \to Aut(N)$ deux morphismes de groupes.

(a) Rappeler la définition du produit semi-direct $N \rtimes_{\varphi} H$.

On se propose de trouver des conditions suffisantes pour que les groupes $N \rtimes_{\varphi} H$ et $N \rtimes_{\psi} H$ soient isomorphes.

- (b) On suppose qu'il existe $\alpha \in Aut(H)$ tel que $\psi = \varphi \circ \alpha$. Montrer que $N \rtimes_{\varphi} H \simeq N \rtimes_{\psi} H$ (penser à $(n,h) \mapsto (n,\alpha(h))$).
 - (c) On suppose qu'il existe $u \in Aut(N)$ tel que

$$\forall h \in H, \quad \varphi(h) = u \circ \psi(h) \circ u^{-1}$$

Montrer que $N \rtimes_{\varphi} H \simeq N \rtimes_{\psi} H$ (penser à $(n,h) \mapsto (u(n),h)$).

Solution. (a) La loi du produit semi-direct $N \rtimes_{\varphi} H$ est donnée par

$$(n,h)(n',h') = (n\varphi(h)(n'),hh'), \forall (n,h),(n,h') \in N \rtimes_{\varphi} H$$

(b) Considérons l'application

$$f: N \rtimes_{\psi} H \to N \rtimes_{\varphi} H$$
$$(n,h) \mapsto (n,\alpha(h))$$

et montrons qu'il s'agit d'un ismomorphisme de groupes.

Soient $(n,h),(n,h')\in N\rtimes_{\psi}H$. On a d'une part

$$f((n,h)(n',h')) = f(n\psi(h)(n'), hh') = (n\psi(h)(n'), \alpha(hh')).$$

D'autre part

$$f(n,h)f(n',h') = (n,\alpha(h))(n',\alpha(h'))$$

$$= (n\varphi(\alpha(h))(n'),\alpha(h)\alpha(h'))$$

$$= (n(\varphi \circ \alpha)(h)(n'),\alpha(hh')), \text{ car } \alpha \in Aut(H)$$

$$= (n\psi(h)(n'),\alpha(hh')), \text{ car } \psi = \varphi \circ \alpha$$

Ainsi f((n,h)(n',h')) = f(n,h)f(n',h') et f est un morphisme de groupes. On vérifie facilement que f est bijective, de bijection réciproque l'application

$$\begin{array}{ccc} N \rtimes_{\varphi} H & \to & N \rtimes_{\psi} H \\ (n,h) & \mapsto & (n,\alpha^{-1}(h)) \end{array}$$

(c) Considérons l'application

$$f: N \rtimes_{\psi} H \to N \rtimes_{\varphi} H$$
$$(n,h) \mapsto (u(n),h).$$

et montrons qu'il s'agit d'un ismomorphisme de groupes.

Soient $(n,h),(n,h')\in N\rtimes_{\psi}H$. On a d'une part

$$f((n,h)(n',h')) = f(n\psi(h)(n'),hh') = (u(n\psi(h)(n')),hh').$$

D'autre part

```
f(n,h)f(n',h') = (u(n),h)(u(n'),h') 
 = (u(n)\varphi(h)(u(n')),hh') 
 = (u(n)(\varphi(h)\circ u)(n'),hh') 
 = (u(n)(u\circ\psi(h))(n'),hh'), car \varphi(h) = u\circ\psi(h)\circ u^{-1} 
 = (u(n\psi(h)(n')),hh'), car u \in Aut(N)
```

Ainsi f((n,h)(n',h')) = f(n,h)f(n',h') et f est un morphisme de groupes. On vérifie facilement que f est bijective, de bijection réciproque l'application

$$\begin{array}{ccc} N \rtimes_{\varphi} H & \to & N \rtimes_{\psi} H \\ (n,h) & \mapsto & (u^{-1}(n),h). \end{array}$$

Exercice 4. Soit G un groupe abélien d'élément neutre 0. Soit H un sous-groupe de G. On dit que H est dense dans G si, pour tout sous-groupe **non nul** K de G, on a $H \cap K \neq \{0\}$.

- (a) Déterminer tous les sous-groupes denses dans \mathbb{Z} .
- (b) Soit H un sous-groupe dense dans G. Montrer que :
 - (i) Tout élément d'ordre un nombre premier de G appartient H.
 - (ii) Pour tout $x \in G$, il existe un entier $n \in \mathbb{N}^*$ tel que $nx \in H$.
- (c) Réciproquement, montrer que, si H est un sous-groupe de G vérifiant les conditions (i) et (ii) ci-dessus, alors H est dense dans G.
- (d) On note $\pi(G)$ l'ensemble des éléments d'ordre premier de G et d(G) le sous-groupe de G engendré par $\pi(G)$. Montrer que, si G est fini, alors d(G) est dense dans G.
 - (e) Déterminer d(G) pour $G = \mathbb{Z}/8\mathbb{Z}$ et $G = \mathbb{Z}/15\mathbb{Z}$.

Solution. Si H est un sous-groupe desne dans G avec $G \neq \{0\}$, alors $H = H \cap G \neq \{0\}$.

- (a) Les seuls sous-groupes de \mathbb{Z} sont ceux de la forme $n\mathbb{Z}$ avec $n \in \mathbb{N}$. Soit H un sous-groupe non nul dense de \mathbb{Z} , alors $H = n\mathbb{Z}$ avec $n \in \mathbb{N}^*$.
 - (b) Soit H un sous-groupe dense de G.
- (i) Soit $x \in G$ d'ordre p, un nombre premier. Alors $K = \langle x \rangle$ est un sous-groupe d'ordre p et $H \cap K$ est un sous-groupe non nul de K.. L'ordre de $H \cap K$ divise l'ordre de K et n'est pas égal à 1, c'est donc p et $K \cap H = K$. Donc $x \in K \cap H \subset H$.
- (ii) Soit $x \in G$ et posons $K = \langle x \rangle = \{ma; m \in \mathbb{Z}\} = \{0, nx, -nx; n \in \mathbb{N}^*\}$. Par hypothèse $\{0\} \subsetneq H \cap K$. Donc il existe $n \in \mathbb{N}^*$ tel que $nx \in K \cap H \subset H$ ou $-nx \in K \cap H \subset H$. Comme H est stable par passage à l'opposé, il contient nx.
 - (c) Soit H un sous-groupe de G vérifiant (i) et (ii).

Soit K un sous-groupe de G, $K \neq \{0\}$. On choisit $x \in K$, $x \neq 0$. D'après (ii), il existe $n \in \mathbb{N}^*$ tels que $nx \in H$, donc $nx \in H \cap K$.

• 1er cas : $nx \neq 0$, alors $H \cap K \neq \{0\}$.

• 2eme cas: nx = 0, alors x est d'ordre fini $q \ge 2$. Si p est un diviseur premier de q on peut écrire q = pr. Le plus petit entier $m \ge 1$ tel que mrx = 0 est p. Donc rx est d'ordre p. D'après (i) on a $rx \in H$, donc $0 \ne rx \in H \cap K$ et $H \cap K \ne \{0\}$.

Par conséquent H est dense dans G.

- (d) Par définition d(G) vérifie (i). Si $x \in G$, il est d'ordre fini divisant l'ordre de G, donc il existe $n \in \mathbb{N}^*$ tel que $nx = 0 \in d(G)$. Ainsi (ii) est aussi vérifiée et d(G) est dense dans G.
- (e) Dans $\mathbb{Z}/8\mathbb{Z}$, $\bar{0}$ est d'ordre 1, $\bar{1}, \bar{3}, \bar{5}$ et $\bar{7}$ sont d'ordre 8, $\bar{2}$ et $\bar{6}$ sont d'ordre 4 et seul $\bar{4}$ est d'ordre 2 (premier). Donc $d(\mathbb{Z}/8\mathbb{Z}) = \langle \bar{4} \rangle = \{\bar{0}, \bar{4}\} = 4\mathbb{Z}/8\mathbb{Z}$.

Dans $\mathbb{Z}/8\mathbb{Z}$, $\bar{3}$ est d'ordre 5 et $\bar{5}$ est d'ordre 3. Donc $d(\mathbb{Z}/15\mathbb{Z})$ contient un élément d'ordre 3 et un élément d'ordre 5; son ordre est donc multiple de 15. Comme c'est un sous-groupe de $\mathbb{Z}/15\mathbb{Z}$ qui est d'ordre 15, il lui est égal, $d(\mathbb{Z}/15\mathbb{Z}) = \mathbb{Z}/15\mathbb{Z}$.