

Algèbre linéaire 1

Partiel du 22 Mars 2022 - durée 2h

N.B. Documents et calculatrices non autorisés. Vous pouvez traiter les exercices dans l'ordre de votre choix. Développez avec précision l'argument qui justifie votre réponse à chaque question.

Exercice 1. Vérifier si les vecteurs suivants forment une famille libre de \mathbb{R}^4 , sinon en extraire une sous-famille libre (écrire les autres vecteurs comme combinaison linéaire des vecteurs de la sous-famille libre) et la compléter en une base de \mathbb{R}^4 ,

$$v_1 = (1, 1, 1, 1), v_2 = (1, 3, 2, 4), v_3 = (2, 1, 4, 0), v_4 = (3, -2, 3, -5), v_5 = (2, 2, 7, 1).$$

Solution de l'exercice 1. Nous pouvons déjà voir que la famille $(v_1, v_2, v_3, v_4, v_5)$ n'est pas libre, puisque son cardinal est plus grand que la dimension de \mathbb{R}^4 .

On applique l'algorithme du pivot de Gauss pour en extraire une sous-famille libre (voir explication dans Exemple 7.7 (2) du Chapitre 3) :

On déduit que les vecteurs v_1, v_2, v_3 (sur lesquels nous avons choisi des pivots) forment une sous-famille libre et que

$$v_4 = (3)v_1 + (-2)v_2 + (1)v_3 = 3v_1 - 2v_2 + v_3,$$

$$v_5 = (-3)v_1 + (1)v_2 + (2)v_3 = -3v_1 + v_2 + 2v_3.$$

On déduit aussi que nous pouvons compléter la famille (v_1, v_2, v_3) par le vecteur e_2 de la base canonique de sorte que (v_1, v_2, v_3, e_2) soit une base de \mathbb{R}^4 .

Exercice 2. Déterminer l'inverse de la matrice

$$A = \left(\begin{array}{rrr} 1 & 2 & -1 \\ 2 & 4 & -1 \\ -2 & -5 & 3 \end{array}\right).$$

Solution de l'exercice 2. Nous appliquons l'algorithme de de Gauss via les bi-matrices (voir explication dans Exemple 4.8 du Chapitre 2) :

$$\begin{pmatrix} 1 & 2 & -1 & 1 & 0 & 0 \\ 2 & 4 & -1 & 0 & 1 & 0 \\ -2 & -5 & 3 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} \boxed{1} & 2 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 & 1 & 0 \\ 0 & -1 & 1 & 2 & 0 & 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} \boxed{1} & 2 & -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & -2 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} \boxed{1} & 2 & 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 4 & -1 & 1 \\ 0 & 0 & \boxed{1} & -2 & 1 & 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} \boxed{1} & 0 & 0 & 7 & -1 & 2 \\ 0 & \boxed{-1} & 0 & 4 & -1 & 1 \\ 0 & 0 & \boxed{1} & -2 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} \boxed{1} & 0 & 0 & 7 & -1 & 2 \\ 0 & \boxed{1} & 0 & -4 & 1 & -1 \\ 0 & 0 & \boxed{1} & -2 & 1 & 0 \end{pmatrix}.$$

Ainsi, la matrice A est inversible et

$$A^{-1} = \left(\begin{array}{rrr} 7 & -1 & 2 \\ -4 & 1 & -1 \\ -2 & 1 & 0 \end{array} \right).$$

Exercice 3. Soit les matrices

$$A = \begin{pmatrix} 2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 4 & 2 \end{pmatrix} \text{ et } J = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

- (1) Ecrire A comme combinaison linéaire de I_3 et J.
- (2) Calculer J^2 , J^3 , en déduire J^k pour tout entier $k \ge 1$ (faites un raisonnement par récurrence).
- (3) Appliquer la formule du binôme de Newton pour calculer A^n , pour tout $n \in \mathbb{N}$.

Solution de l'exercice 3. (1) On a $A = -2I_3 + 4J$.

(2) Calcul des puissances k-èmes de J pour $k \ge 1$: On a $J^2 = 3J$, $J^3 = J^2 \times J = 3J^2 = 3^2J$. Montrons par récurrence sur $k \ge 1$ que $J^k = 3^{k-1}J$. Supposons la propriété vraie au rang k et montrons qu'elle est encore vraie au rang k+1. On a $J^{k+1} = J^k \times J = 3^{k-1}J \times J = 3^{k-1}J^2 = 3^kJ$ et c'est ce qu'il fallait démontrer. Ainsi

$$k \in \mathbb{N}^*, \ J^k = 3^{k-1}J.$$

(3) 4J et $-2I_3$ commutent donc par la formule du binôme de Newton on a, pour

tout $n \in \mathbb{N}$,

$$A^{n} = (-2I_{3} + 4J)^{n} = 2^{n}(-I_{3} + 2J)^{n}$$

$$= 2^{n} \sum_{k=0}^{n} \binom{n}{k} (2J)^{k} (-I_{3})^{n-k}$$

$$= 2^{n} \sum_{k=0}^{n} \binom{n}{k} 2^{k} (-1)^{n-k} J^{k}$$

$$= 2^{n} \left[\sum_{k=1}^{n} \binom{n}{k} 2^{k} (-1)^{n-k} J^{k} + \binom{n}{0} 2^{0} (-1)^{n-0} J^{0} \right]$$

$$= 2^{n} \left[\sum_{k=1}^{n} \binom{n}{k} 2^{k} (-1)^{n-k} 3^{k-1} J + (-1)^{n} I_{3} \right]$$

$$= (-2)^{n} I_{3} + 2^{n} \left[\sum_{k=1}^{n} \binom{n}{k} 2^{k} (-1)^{n-k} 3^{k-1} \right] J$$

$$= (-2)^{n} I_{3} + \frac{2^{n}}{3} \left[\sum_{k=1}^{n} \binom{n}{k} 2^{k} (-1)^{n-k} 3^{k} \right] J$$

$$= (-2)^{n} I_{3} + \frac{2^{n}}{3} \left[\sum_{k=1}^{n} \binom{n}{k} 6^{k} (-1)^{n-k} \right] J$$

$$= (-2)^{n} I_{3} + \frac{2^{n}}{3} \left[\sum_{k=0}^{n} \binom{n}{k} 6^{k} (-1)^{n-k} - \binom{n}{0} 6^{0} (-1)^{n-0} \right] J$$

$$= (-2)^{n} I_{3} + \frac{2^{n}}{3} \left[(6-1)^{n} - (-1)^{n} \right] J$$

$$= (-2)^{n} I_{3} + \frac{2^{n}}{3} \left[5^{n} - (-1)^{n} \right] J.$$

Exercice 4. On considère l'espace vectoriel \mathbb{R}^3 , munit de sa base canonique (e_1, e_2, e_3) . Soient

$$E = \left\{ (x, y, z) \in \mathbb{R}^3 \mid \begin{cases} 2x + y - z = 0 \\ x + 2y + z = 0 \end{cases} \right\}$$

et

$$v_1 = (1, -1, 1), v_2 = (-2, -1, 1), v_3 = (-1, 0, 2).$$

Posons $F = Vect(v_2, v_3)$.

- (1) Montrer que E est un sous-espace vectoriel de \mathbb{R}^3 .
- (2) Déterminer E par des générateurs.
- (3) Donner une base de E et calculer dim E.
- (4) Donner une base de F et calculer dim F.
- (5) Déterminer F par une ou plusieurs équations.
- (6) Montrer que (v_1, v_2, v_3) est une base de \mathbb{R}^3 .
- (7) A-t-on $E \oplus F = \mathbb{R}^3$?
- (8) Soit $u = (x, y, z) = xe_1 + ye_2 + ze_3$, exprimer u dans la base (v_1, v_2, v_3) .

Solution de l'exercice 4. (1) On a :

- $E \subset \mathbb{R}^3$;
- $E \neq \emptyset$ puisque $\mathbf{0}_{\mathbb{R}^3} = (0, 0, 0) \in E$;
- Soient $\lambda \in \mathbb{R}$ un scalaire et v = (x, y, z), v' = (x', y', z') deux vecteurs de E. On a $v + \lambda v' = (x + \lambda x', y + \lambda y', z + \lambda z')$. Pour verifier que ce vecteur est encore dans E, il suffit de montrer que ses coordonnées vérifient les eux équations de E.

Pour la première équation : $2(x + \lambda x') + (y + \lambda y') - (z + \lambda z') = (2x + y - z) + \lambda(2x' + y' - z') = 0 + \lambda \times 0 = 0$.

Pour la première équation : on fait le même calcul.

Ainsi $v + \lambda v' \in E$ et par suite E est un sous-espace vectoriel de \mathbb{R}^3 .

(2) Soit $v = (x, y, z) \in \mathbb{R}^3$. On a

$$v = (x, y, z) \in E \iff \begin{cases} 2x + y - z = 0 \\ x + 2y + z = 0 \end{cases}$$

On procède à la résolution du système linéaire :

Par conséquent

$$v = (x, y, z) \in E \iff \begin{cases} x = -y \\ z = -y \end{cases} \iff v = (-y, y, -y) = y(-1, 1, -1).$$

D'où

$$E = \operatorname{Vect}((-1, 1, -1)) = \operatorname{Vect}(-v_1) = \operatorname{Vect}(v_1),$$

- (3) de la question (2) on déduit que la famille $\mathcal{B}_E = (v_1)$ est une base de E et que dim E = 1.
- (4) Par définition de F la famille $\mathcal{B}_F = (v_2, v_3)$ est une famille génératrice de F. Comme les deux vecteurs de cette famille ne sont pas colinéaires, \mathcal{B}_F est libre et par suite c'est une base de F. D'où dim F = 2.
 - (5) Soit $v = (x, y, z) \in \mathbb{R}^3$. On a

$$v = (x, y, z) \in F \iff \exists \alpha, \beta \in \mathbb{R}, \quad v = \alpha v_2 + \beta v_3$$

$$\iff \begin{cases}
-2\alpha - \beta &= x \\
-\alpha &= y \\
\alpha + 2\beta &= z
\end{cases}$$

On en déduit alors que

$$v = (x, y, z) \in F \iff 2x - 3y + z = 0,$$

c-à-d.

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid 2x - 3y + z = 0\}.$$

- (6) En appliquant l'algorithme de Gauss on montre facilement que la famille (v_1, v_2, v_3) est une famille libre de \mathbb{R}^3 . Comme le cardinal de cette famille est égale à la dimension de \mathbb{R}^3 , on déduit que (v_1, v_2, v_3) est une base de \mathbb{R}^3 .
- (7) Puisque $\mathcal{B}_E = (v_1)$ est une base de E, que $\mathcal{B}_F = (v_2, v_3)$ est une base de F et que la réunion $\mathcal{B}_E \cup \mathcal{B}_F = (v_1, v_2, v_3)$ est une base de \mathbb{R}^3 , on conclut que $E \oplus F = \mathbb{R}^3$.
 - (8) Soit $u = xe_1 + ye_2 + ze_3 \in \mathbb{R}^3$. Si $u = \alpha v_1 + \beta v_2 + \gamma v_3$, alors

$$\begin{cases} \alpha - 2\beta - \gamma = x \\ -\alpha - \beta = y \\ \alpha + \beta + 2\gamma = z \end{cases}$$

Après résolution du système linéaire (par l'algorithme e Gauss par exemple) on trouve

$$\alpha = \frac{1}{3}x - \frac{1}{2}y + \frac{1}{6}z$$

$$\beta = -\frac{1}{3}x - \frac{1}{2}y - \frac{1}{6}z$$

$$\gamma = \frac{1}{2}y + \frac{1}{2}z$$

d'où

$$u = \left(\frac{1}{3}x - \frac{1}{2}y + \frac{1}{6}z\right)v_1 + \left(-\frac{1}{3}x - \frac{1}{2}y - \frac{1}{6}z\right)v_2 + \left(\frac{1}{2}y + \frac{1}{2}z\right)v_3.$$