

Algèbre bilinéaire Contrôle Continu du 30/03/2017 Epreuve de 2 heures

Exercice 1. Soit $E = \mathbb{R}^4$ de base canonique $\mathcal{B}_0 = (e_1, e_2, e_3, e_4)$. Dans cette base, on considère les vecteurs suivants

$$v_1 = (1, 0, 0, 0), v_2 = (1, 0, 1, 0), v_3 = (1, 1, 1, -1),$$

et on note $F = \text{Vect}\{v_1, v_2, v_3\}.$

- 1. On munit E de son produit scalaire usuel $\langle x, y \rangle = \sum_{i=1}^{4} x_i y_i$.
 - (a) Montrer que la famille $\{v_1, v_2, v_3\}$ est libre, en déduire la dimension de F.
 - (b) Déterminer une base orthonormale de F.
 - (c) Déterminer une base orthonormale de F^{\perp} .
 - (d) Déterminer la matrice de la projection orthogonale p_F sur F.
 - (e) En déduire la matrice de symétrie orthogonale $s_{F^{\perp}}$ par rapport à F^{\perp} .
 - (f) Soit v = (1, 1, 0, 0). Déterminer d(v, F) et $d(v, F^{\perp})$.

[Barème.
$$(a):1, (b):1+1+1, (c):1, (d):1, (e):1, (f):1+1$$
]

2. On considère la forme quadratique q sur E définie par

$$q(x_1, x_2, x_3, x_4) = x_1^2 + x_3^2 + x_4^2 + 2x_1x_3 + 2x_1x_4 + 4x_2x_3 + 6x_3x_4.$$

- (a) Déterminer la matrice de q dans la base \mathcal{B}_0 , qu'on notera A.
- (b) Déterminer l'orthogonal de F pour q. Quelle est sa dimension?
- (c) Que peut-on en déduire de la dégénérescence de la forme quadratique q.
- (d) Donner une réduction de Gauss de la forme quadratique q. Déterminer alors sa signature, son rang et son noyau.
- (e) Déterminer une base de E qui soit q-orthogonale.
- (f) Déterminer une matrice inversible P telle que ${}^{t}PAP$ soit diagonale.

[Barème. (a):1, (b):
$$1+0.5$$
, (c): 0.5 , (d): $2+0.5+0.5+0.5$, (e): 1 , (f): 1]

Corrigé.

1. (a) Si $\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 = 0_{\mathbb{R}^3}$ alors $(\alpha_1 + \alpha_2 + \alpha_3, \alpha_2 + \alpha_3, -\alpha_3) = (0, 0, 0)$, d'où $\alpha_1 = \alpha_2 = \alpha_3 = 0$. La famille (v_1, v_2, v_3) étant libre et engendre F, c'est donc une base de F.

(b) On va appliquer le procédé de Gram-Schmidt à la famille (v_1, v_2, v_3) . $u_1 := v_1 = (1, 0, 0, 0), ||u_1|| = 1, donc f_1 = \frac{u_1}{||u_1||} = \boxed{(1, 0, 0, 0)}.$ $u_2 := v_2 - \langle v_2, f_1 \rangle f_1 = (0, 0, 1, 0).$ Ce vecteur est de norme 1, donc $f_2 = \frac{u_2}{||u_2||} = \boxed{(0, 0, 1, 0)}.$ $u_3 := v_3 - \langle v_3, f_1 \rangle f_1 - \langle v_3, f_2 \rangle f_2 = (0, 1, 0, -1).$ Ce vecteur est de norme $\sqrt{2}$, donc $f_3 = \boxed{\frac{1}{\sqrt{2}}(0, 1, 0, -1)}.$

Par conséquent (f_1, f_2, f_3) , est une b.o.n. de F pour le produit scalaire usuel.

(c) On peut remarquer que comme dim F=3, alors dim $F^{\perp}=\dim E-\dim F=1$. Soit $v=(x_1,x_2,x_3,x_4)\in\mathbb{R}^4$. On a

$$v \in F^{\perp} \iff \begin{cases} \langle v, f_1 \rangle = 0 \\ \langle v, f_2 \rangle = 0 \\ \langle v, f_3 \rangle = 0 \end{cases}$$

$$\iff \begin{cases} x_1 = 0 \\ x_3 = 0 \\ x_2 - x_4 = 0 \end{cases}$$

$$\iff v = (0, x_2, 0, x_2) = x_2(0, 1, 0, 1)$$

On en déduite que $F^{\perp} = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4, x_1 = x_3 = 0, x_2 = x_4\}$ et que le vecteur $u_4 = (0, 1, 0, 1)$ constitue une base de F^{\perp} . Ce vecteur étant de norme $\sqrt{2}$, le vecteur $f_4 = \frac{u_4}{\|u_4\|} = \boxed{\frac{1}{\sqrt{2}}(0, 1, 0, 1)}$ constitue une b.o.n. de F^{\perp} .

(d) Notons p_F la projection orthogonale de E sur F. Comme (f_1, f_2, f_3) est une b.o.n. de F, alors pour tout vecteur $v \in E$,

$$p_F(v) = \sum_{i=1}^{3} \langle v, f_i \rangle f_i$$

Rappelons que $\mathcal{B}_0 = (e_1, e_2, e_3, e_4)$ est la base canonique de E. On a

$$\begin{aligned} p_F(e_1) &= \langle e_1, f_1 \rangle f_1 + \langle e_1, f_2 \rangle f_2 + \langle e_1, f_3 \rangle f_3 = (1, 0, 0, 0) \\ p_F(e_2) &= \langle e_2, f_1 \rangle f_1 + \langle e_2, f_2 \rangle f_2 + \langle e_2, f_3 \rangle f_3 = \frac{1}{2}(0, 1, 0, -1) \\ p_F(e_3) &= \langle e_3, f_1 \rangle f_1 + \langle e_3, f_2 \rangle f_2 + \langle e_3, f_3 \rangle f_3 = (0, 0, 1, 0) \\ p_F(e_4) &= \langle e_4, f_1 \rangle f_1 + \langle e_4, f_2 \rangle f_2 + \langle e_4, f_3 \rangle f_3 = -\frac{1}{2}(0, 1, 0, -1). \end{aligned}$$

On en déduit que la matrice de p_F dans la base \mathcal{B}_0 est

$$Mat_{\mathcal{B}_0}(p_F) = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1/2 & 0 & -1/2\\ 0 & 0 & 1 & 0\\ 0 & -1/2 & 0 & 1/2 \end{pmatrix}.$$

(e) On a $s_{F^{\perp}} = 2p_{F^{\perp}} - Id = Id - 2p_F$, donc

$$Mat_{\mathcal{B}_0}(s_{F^{\perp}}) = I_4 - 2Mat_{\mathcal{B}_0}(p_F) = \begin{pmatrix} -1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & -1 & 0\\ 0 & 1 & 0 & 0 \end{pmatrix}.$$

(f) Soit v = (1, 1, 0, 0). On a

$$p_F(v) = \langle v, f_1 \rangle f_1 + \langle v, f_2 \rangle f_2 + \langle v, f_3 \rangle f_3 = (1, \frac{1}{2}, 0, -\frac{1}{2}),$$

et

$$p_{F^{\perp}}(v) = \langle v, f_4 \rangle f_4 = (0, \frac{1}{2}, 0, \frac{1}{2}).$$

On peut aussi écrire

$$p_{F^{\perp}}(v) = v - p_F = (1, 1, 0, 0) - (1, \frac{1}{2}, 0, -\frac{1}{2}) = (0, \frac{1}{2}, 0, \frac{1}{2}),$$

 $car p_{F^{\perp}} + p_F = Id_E$. Donc

$$d(v, F) = ||v - p_F(v)|| = \boxed{\frac{1}{\sqrt{2}}}$$

et

$$d(v, F^{\perp}) = ||v - p_{F^{\perp}}(v)|| = ||p_F(v)|| = \frac{\sqrt{3}}{\sqrt{2}}.$$

2. (a) On a

$$A = Mat_{\mathcal{B}_0}(q) = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 0 & 2 & 0 \\ 1 & 2 & 1 & 3 \\ 1 & 0 & 3 & 1 \end{pmatrix}.$$

(b) On a $F^{\perp_q} = (\text{Vect}\{f_1, f_2, f_3\})^{\perp_q} = \{f_1, f_2, f_3\}^{\perp_q}$. Or si $v = (x_1, x_2, x_3, x_4) \in E$, alors

$$v \perp_q f_1 \iff (x_1 \quad x_2 \quad x_3 \quad x_4) A \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = 0$$
$$\iff x_1 + x_3 + x_4 = 0$$

De même on obtient

$$v \perp_q f_2 \iff x_1 + 2x_2 + x_3 + 3x_4 = 0$$

et

$$v \perp_q f_3 \iff -x_1 - x_3 - x_4 = 0.$$

Donc

$$v \in F^{\perp_q} \iff \begin{cases} x_1 + x_3 + x_4 = 0 \\ x_1 + 2x_2 + x_3 + 3x_4 = 0 \end{cases}$$

$$\iff \begin{cases} x_1 + x_3 + x_4 = 0 \\ x_2 + x_4 = 0 \end{cases}$$

$$\iff v = x_1(1, 0, -1, 0) + x_4(0, -1, -1, 1)$$

D'où $F^{\perp_q}=\operatorname{Vect}\{(1,0,-1,0),(0,-1,-1,1)\}$. Les deux vecteurs étant libres, il forment donc une base de F^{\perp_q} et dim $F^{\perp_q}=2$.

- (c) La forme quadratique q est dégénérée car dim $F + \dim F^{\perp_q} = 5 \neq \dim \mathbb{R}^4$.
- (d) Appliquons la méthode de Gauss pour décomposer q en combinaison linéaire de carrées de formes linéaires :

$$q(x_1, x_2, x_3, x_4) = (x_1 + x_3 + x_4)^2 - (x_3 + x_4)^2 + x_3^2 + x_4^2 + 4x_2x_3 + 6x_3x_4$$

$$= (x_1 + x_3 + x_4)^2 + 4x_2x_3 + 4x_3x_4$$

$$= (x_1 + x_3 + x_4)^2 + (x_2 + x_3 + x_4)^2 - (-x_2 + x_3 - x_4)^2$$

$$= \ell_1(x_1, x_2, x_3, x_4)^2 + \ell_2(x_1, x_2, x_3, x_4)^2 - \ell_3(x_1, x_2, x_3, x_4)^2$$

οù

$$\ell_1(x_1, x_2, x_3, x_4) = x_1 + x_3 + x_4$$

$$\ell_2(x_1, x_2, x_3, x_4) = x_2 + x_3 + x_4$$

$$\ell_3(x_1, x_2, x_3, x_4) = -x_2 + x_3 - x_4$$

Ces trois formes linéaires sont linéairement indépendantes.

On en déduit que q est de signature (2,1) et de rang 3.

(e) Soit $\mathcal{B}_0^* = (e_1^*, e_2^*, e_3^*, e_4^*)$ la base duale de \mathcal{B}_0 (base formées de formes coordonnées). Alors

$$\begin{array}{ll} \ell_1 &= e_1^* + e_3^* + e_4^* \\ \ell_2 &= e_2^* + e_3^* + e_4^* \\ \ell_3 &= -e_2^* + e_3^* - e_4^* \end{array}$$

La famille (ℓ_1, ℓ_2, ℓ_3) est une famille libre de E^* . On peut la compléter par e_4^* de sorte que $(\ell_1, \ell_2, \ell_3, e_4^*)$ soit une base E^* . Soit $\mathcal{B} = (w_1, w_2, w_3, w_4)$ la base préduale de $(\ell_1, \ell_2, \ell_3, e_4^*)$, alors \mathcal{B} est une base q-orthogonale de E. Déterminons la. Soit

$$Q = Mat_{\mathcal{B}_0^*}(\ell_1, \ell_2, \ell_3, e_4^*) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 1 \end{pmatrix}$$

elle est bien inversible (de déterminant 2). Si P est la matrice de passage de \mathcal{B}_0 à \mathcal{B} , alors $P = {}^tQ^{-1}$. On trouve après calculs

$$P = \begin{pmatrix} 1 & -1/2 & 1/2 & -1 \\ 0 & 1/2 & 1/2 & -1 \\ 0 & 1/2 & -1/2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

d'où

$$w_1 = (1, 0, 0, 0, 1), \ w_2 = (-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0), \ w_3 = (-\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, 0), \ w_4 = (-1, -1, 0, 1).$$

(f) La matrice de q dans la base $\mathcal{B} = (w_1, w_2, w_3, w_4)$ est donc

$${}^{t}PAP = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right).$$

Exercice 2. Soit E un espace préhilbertien réel munit du produit scalaire $(x, y) \mapsto \langle x, y \rangle$ et $a \in E$ un vecteur de nome 1. On définit l'application $\varphi : E \times E \to \mathbb{R}$ par

$$\varphi(x,y) = \langle x,y \rangle + \lambda \langle x,a \rangle \langle a,y \rangle$$

où λ est un nombre réel non nul.

- (a) Montrer que si φ est un produit scalaire alors $1 + \lambda > 0$.
- (b) Réciproquement, montrer que si $1 + \lambda > 0$, alors φ est un produit scalaire. (On distinguera le cas où $\lambda \geq 0$ et le cas où $-1 < \lambda < 0$ et dans ce dernier cas on pourra utiliser l'inégalité de Cauchy-Schwarz).

Corrigé. Il est claire que φ est une fbs sur E.

Pour tout $x \in E$, on a

$$\varphi(x,x) = ||x||^2 + \lambda \langle x, a \rangle^2.$$

En particulier

$$\varphi(a, a) = ||a||^2 + k\langle a, a\rangle^2 = ||a||^2 + \lambda ||a||^4 = 1 + \lambda.$$

Pour que φ soit définie positive, il est nécessaire que $1 + \lambda > 0$.

Inversement, supposons que $1 + \lambda > 0$, c-à-d. $\lambda \in]-1, +\infty[$.

- $-Si \ \lambda \geq 0$, alors pour tout $x \in E$, $\varphi(x,x) \geq ||x||^2$ et si $x \neq 0$, alors $\varphi(x,x) > 0$. Donc dans ce cas la fbs φ est définie positive.
 - $-Si 1 < \lambda < 0$, alors en posant $\lambda = -\alpha$, on a $0 < \alpha < 1$ et pour tout $x \in E$,

$$\varphi(x,x) = ||x||^2 - \alpha \langle x, a \rangle^2$$

D'après l'inégalité de Cauchy-Schwarz

$$\langle x, a \rangle^2 \le ||x||^2 ||a||^2 = ||x||^2,$$

donc

$$\varphi(x,x) \ge ||x||^2 - \alpha ||x||^2 = (1-\alpha)||x||^2 \ge 0$$

et si $x \neq 0$, alors $\varphi(x,x) > 0$. Dans ce cas aussi la fbs est définie positive.