

Algèbre bilinéaire – Feuille 4

Orientation d'un espace euclidien, produit mixte, produit vectoriel

Exercice 1. Soit E un espace vectoriel euclidien orienté par le choix d'une b.o.n. $\mathcal{B}_0 = (e_i)_{1 \leq i \leq n}$ et soit $\sigma \in \mathcal{S}_n$ une permutation. A quelle condition la base $(e_{\sigma(i)})_{1 \leq i \leq n}$ est-elle directe?

Exercice 2. Donner une équation du plan vectoriel P de \mathbb{R}^3 engendré par les vecteurs u=(1,1,1) et v=(1,2,3).

Calculer la distance de x = (1, -1, 1) à P.

Dans le reste des exercices, E désigne un espace vectoriel euclidien de dimension 3 orienté par le choix d'une b.o.n. $\mathcal{B}_0 = (e_1, e_2, e_3)$.

Exercice 3. Soit (f_1, f_2, f_3) une b.o.n. directe de E. Montrer que

$$f_1 \wedge f_2 = f_3$$
, $f_2 \wedge f_3 = f_1$, $f_3 \wedge f_1 = f_2$.

Exercice 4. Montrer que pour tout $x, y, z \in E$, on a

$$x \wedge (y \wedge z) = \langle x; z \rangle y - \langle x; y \rangle z; (x \wedge y) \wedge z = \langle x; z \rangle y - \langle y; z \rangle x.$$

Exercice 5. Soient $x, y, z \in E \setminus \{0\}$. A quelle condition a-t-on

$$x \wedge (y \wedge z) = (x \wedge y) \wedge z$$
.

Exercice 6. Soient $a, b \in E$ avec $a \neq 0$. Résoudre l'équation $a \wedge x = b$.

Exercice 7. Montrer que pour tout $x, y \in E$,

$$\langle x|y\rangle^2 + ||x \wedge y||^2 = ||x||^2 ||y||^2.$$

Exercice 8. Montrer que pour tout $x, y, z, t \in E$, on a

$$\langle x \wedge y | z \wedge t \rangle = \left| \begin{array}{cc} \langle x | z \rangle & \langle y | z \rangle \\ \langle x | t \rangle & \langle y | t \rangle \end{array} \right| = \langle x | z \rangle \langle y | t \rangle - \langle x | t \rangle \langle y | z \rangle$$

Exercice 9. Montrer que pour tout $x, y, z, t \in E$, on a

$$(x \wedge y) \wedge (z \wedge t) = -\det(x, y, z)t + \det(x, y, t)z.$$

Exercice 10. Soient $x, y, z \in E$. Montrer que

(a) $||x \wedge y||$ est l'aire du parallélogramme construit sur x et y.

- (b) $|\det(x,y,z)|$ est le volume du parallélépipè de construit sur x,y,z.
- (c) $\frac{1}{6} |\det(x, y, z)|$ est le volume du tétraè dre construit sur x, y, z.

Exercice 11. Pour tout $y \in E$, on désigne par φ_y l'endomorphisme de E défini par

$$\forall x \in E, \ \varphi_y(x) = x \wedge y.$$

- (a) Déterminer la matrice de φ_y dans la base \mathcal{B}_0 .
- L'endomorphisme φ_y est-il injectif? (b) Montrer que φ_y^3 et φ_y sont proportionnels. (c) En déduire que pour $x, y \in E$ avec $y \neq 0$,

$$e^{\varphi_y}(x) = \cos(\|y\|)x + (1 - \cos(\|y\|)\frac{\langle x|y\rangle}{\|y\|^2}y + \frac{\sin(\|y\|)}{\|y\|}(x \wedge y).$$